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• Human color vision requires comparing responses 
of di�erent types of photoreceptors.
  

• It is not known whether the underlying neural 
circuitry that implements these comparisons relies 
on molecular markers to distinguish responses from 
different photoreceptor types, or whether photore-
ceptors are typed via a learning process driven by 
the receptor responses.
  

• Here we ask whether it is possible to learn the 
spectral type of each receptor in a retinal mosaic.

Figure 1.  Retinal mosaics.  Schematics of retinal mosaics from 
�ve individuals (Hofer et al., 2005, Brainard et al., 2008).

For each observed response, r, to image i:

For each possible arrangement, x:

Estimate i

Update p(x) using liklihood of reconstructed i

UPDATE
KNOWLEDGE ABOUT 

RECEPTORS: p(x) 

Observe next batch of responses

Reconstruct images assuming each arrangement

Weight reconstructions according to p(x)

Update p(i) using reconstructions

UPDATE 
KNOWLEDGE ABOUT 

WORLD: p(i)

Figure 2.  Algorithm overview.  Images are successively presented to the model retina.  
Each observed response is used to update the estimated types of each receptor in 
the mosaic.  The type estimates rely on knowledge about the parameters of the 
stimulus distribution, which are also unknown.  These prior parameter estimates are 
updated after each batch of n stimuli.  The prior parameter estimates rely on 
knowledge about the receptor types.  Despite initial uncertainty, after many 
iterations, the algorithm will correctly tag receptors and estimate stimulus prior 
parameters.

Figure 3.  Model overview.  A.  Model world.  Each image contains one 
intensity value per waveband at each of 12 pixels.  B.  Model retina.  The 
optics blur the retinal image, which is then sampled by punctate receptors.  
Each receptor responds maximally to one of the three wavebands.  
C.  Stimulus distribution.  Stimuli are drawn at random from a multivariate 
Gaussian distribution.  Here we illustrate a single dimension of the stimulus 
distribution.  Parameters of the stimulus distribution include the waveband 
correlation and spatial correlation.  D.  Estimating stimuli.  Given the current 
estimates of the parameters de�ning the stimulus distribution and the 
observed receptor responses, we use Bayes’ Rule to estimate the stimulus 
that gave rise to the responses.
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• Starting with a flat prior over receptor arrangements, our 
algorithm can correctly type each receptor in the retinal mosaic.
  

• Prior assumptions about stimulus statistics can affect the 
accuracy of the receptor typing.
  

• Our analysis shows that the neural circuitry underlying color 
vision need not rely on molecular markers to distinguish 
photoreceptor types.
  

• These computations address the fundamental question of the 
degree to which sensory systems can learn their front-end 
properties through experience.

Figure 4.  Learning photoreceptor labels.  A.  Summary.  Here we assessed 
the mean labeling error after ten thousand stimulus draws as a function 
of the initial accuracy of the stimulus prior.  B.  Learning over time.  We 
presented images to the model retina and measured the proportion of 
correctly tagged receptors after each stimulus draw.  We also explored 
how accuracy of the prior knowledge about the world affects the 
accuracy of receptor typing.  The red curve was generated using the 
true stimulus parameters as the prior, while the blue curve was 
generated using a randomly drawn prior.
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Figure 6.  Example matrices.  A.  Covariance estimates.  Here we show the 
true (left), prior (middle), and estimated (right) stimulus covariance 
matrices.  B.  Response covariance estimates.  Here we show the matrices 
in A, viewed through the true receptor arrangement (shown in Fig. 3B).
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Figure 7.  Learning 
covariance matrices.  
A.  Covariance estimates.  We 
measured the MSE between 
the true and estimated 
covariance matries after each 
batch of stimuli.  B.  Receptor 
covariance estimates.  We 

measured the MSE between the true stimulus covariance matrix mapped through the 
true receptors and the estimated covariance matix mapped through the estimated 
receptors.
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Figure 5.  Learning stimulus 
prior parameters.  We 
presented images to the 
model retina and estimated 
the parameters of the 
stimulus prior after each 
batch of 10 draws (same 

color scheme as Fig. 4B).  A.  Spatial correlation estimates.  
This parameter controls the correlation in intensity 
(within a single color band) across spatial location.  
B.  Waveband correlation estimates.  This parameter 
controls the correlation in intensity across wavebands.  
C. Standard deviation estimates.  This parameter controls 
the width of the stimulus distribution.
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