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Initializing source locations and widths.  We use 
“hotspots” in the neural images to estimate the locations and 
widths of the sources.  We can then solve for the source 
weights using linear regression.  Honing the parameter esti-
mates.  We use a scalable stochastic variational inference-
based fitting procedure to hone the parameter values given 
the observed neural and behavioral data.

Fitting the models

Towards a unified model of corpora and cognition.  Our ap-
proach attempts to infer the evolving state of mental context 
using text, behavioral, and neural data.

Experimental methods.  Participants in an 
fMRI scanner view 60 words, repeated 3 times 
each.  They then study and freely recall 12-item 
lists of the same words.
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Memory experiment

Context-based theories of memory posit that 
items on a studied list become associated with the 
mental contexts in which they are experienced.

We present a framework for tracking the neural 
correlates of individual items6 and the contexts in 
which they are experienced,5 during individual 
study and recall events.

Overview & experimental methods

MENTAL

CONTEXT

WORD

MEANINGS

NEURAL

ACTIVITY

Study

R
ecall

Context-based theories of memory.  Context drifts gradually 
over time and becomes associated with each experienced event, 
giving rise to the contiguity effect in free recall.
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Model of neural activity

Topographic Latent Source Analysis.  Neural patterns are 
represented as linear combinations of spherical sources.2,4  Unsu-
pervised (top) and supervised (bottom) equations are shown.
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Model of mental context

Temporal Context Model.  Mental context vectors are weighted 
averages of topic vectors for studied and recalled words.3,8

xs,n    word studied during trial n
xr,m   word recalled during trial m
Ψs,n   mental context during study of word n
Ψr,m  mental context during recall of word m
Ψs,m* mental context associated with the mth recalled
        word during study

Study
xs,n-1 xs,n xs,N-1

Ψs,n Ψs,n+1 Ψs,N

Recall

Ψs,N Ψr,m Ψr,m+1

Ψs,(m-1)* Ψs,m*

xs,mxs,m-1

Model of word meanings

gene     0.04
dna      0.02
genetic  0.01
.,,

evolve   0.01
organism 0.01
.,,

life     0.02

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents
Topic proportions 
and assignments

Latent Dirichlet Allocation.  Topic vectors are derived by analyzing a collection of documents.1  LDA entails fitting 
the latent (lightly shaded) variables given the observed (darkly shaded) words in the documents.
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ɑ d
zd,i xd,i βk

ɑ     topic sparsity parameter
d    topic proportions for document d
zd,i   topic for word i in document d
xd,i   word i in document d
βk    topic k (a distribution over words)
D    number of documents
I     number of words in each document
K    number of topics

yt = wtF
yt = θt(w)TF

ɸ    voxel noise parameter
yt   brain image during trial t
wt,j source j’s weight during trial t (unsupervised)
wj,k source j’s weight on topic k (supervised)
t   topic vector for word experienced during trial t
ψs,t  mental context during study of word t
ψr,t  mental context during recall of word t
μj   source j’s center location
λj    source j’s width
T   number of trials
J    number of sources
K   number of topics

T
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yt wt,j

Models of evolving neural activity.  The sources’ center 
and width parameters are held fixed across trials. In the un-
supervised model, the source weights vary independently to 
explain each image.  In the supervised model, the source 
weights vary as a function of the semantic attributes of the 
word experienced as the images were collected.  The study 
and recall models account for drifting mental context by in-
troducing an additional autocorrelated latent variable.  In the 
recall model, the mental context associated with the word 
being recalled is reinstated and influences the way in which 
mental context drifts.

U
ns

up
er

vi
se

d
S

up
er

vi
se

d

K

T
ɸ

μj λjwj,k

yt
t

J

Training Study

K

T
ɸ

μj λjwj,k

yt
t

J

Ψs,t

Ψs,t+1

Recall

K

T
ɸ

μj λjwj,k

yt
t

J

Ψr,t

Ψr,t+1Ψs,(t-1)*

ReconstructionOriginal

Unsupervised reconstructions.  Just a few hundred latent sources 
capture most of the variability in a 50,000-voxel image.
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Results
Decoding model
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Decoding topic vectors from 
brain images.  After fitting the 
model to training data7, we treat the 
model parameters as observed and 
compute a posterior distribution 
over topic vectors (or mental con-
text).
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Posterior probability as a function of correlation.  Correla-
tions are between the actual word’s topic vector and the topic 
vector for each alternative word.

Confusion matrices.  These panels summarize decoding errors 
by category (top) and word (bottom).  The right panels display 
the mean (normalized) counts as a function of the positional 
distance from the diagonals of the confusion matrices.
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