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Context-based theories of memory posit that Topics Documents and assignments We collect brain images during each word presentation. Brain images are modeled as linear combinations of spherical sources.
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mental contexts in which they are experienced. | We use a topic model to obtain topic vectors for each presented word. We use the observed brain images to infer the center locations and widths of each source.
We present a framework for tracking the neural We infer the neural representation of each topic by computing a weighted av- We hold the center locations and widths tixed across images and tit per-image weights.
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study and recall events. We interpret new neural patterns as topic vectors by computing the correla-

tion between those patterns and the inferred representation of each topic. 'T'he model can learn the neural representations of words or topics by incorporating weights that
depend on which word or topic the participant
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Towards a unified model of corpora and cognition. Our ap- Topographic Latent Source Analysis. Neural patterns are repre- Decoding topic vectors from brain images. Left. Decoding methods. We train and test the decoder using 10-fold cross validation. Right. Decoding results. The heatmap displays, for each participant and topic, the correlations between the
proach attempts to infer the evolving state of mental context sented as linear combinations of spherical sources.** decoded topic activations across trials (inferred using the brain images) and “true” topic vectors (inferred using a topic model fit to the TASA corpus). The bar plot on the right shows that some topics tend to be decoded well across participants;

using text, behavioral, and neural data. the inset shows that decodability varies with topic familiarity (MRC Psychological Database). The upper bar plot shows the number of sources that yielded the highest overall decoding accuracy for each participant.
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