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Abstract

While color vision mediated by rod photoreceptors in dim light is possible (Kelber & Roth, 2006), most animals,
including humans, do not see in color at night. This is because their retinas contain only a single class of rod
photoreceptors. Many of these same animals have daylight color vision, mediated by multiple classes of cone
photoreceptors. We develop a general formulation, based on Bayesian decision theory, to evaluate the efficacy of various
retinal photoreceptor mosaics. The formulation evaluates each mosaic under the assumption that its output is processed
to optimally estimate the image. It also explicitly takes into account the statistics of the environmental image
ensemble. Using the general formulation, we consider the trade-off between monochromatic and dichromatic retinal
designs as a function of overall illuminant intensity. We are able to demonstrate a set of assumptions under which
the prevalent biological pattern represents optimal processing. These assumptions include an image ensemble
characterized by high correlations between image intensities at nearby locations, as well as high correlations between
intensities in different wavelength bands. They also include a constraint on receptor photopigment biophysics and/or
the information carried by different wavelengths that produces an asymmetry in the signal-to-noise ratio of the output of
different receptor classes. Our results thus provide an optimality explanation for the evolution of color vision for
daylight conditions and monochromatic vision for nighttime conditions. An additional result from our calculations is that
regular spatial interleaving of two receptor classes in a dichromatic retina yields performance superior to that of a
retina where receptors of the same class are clumped together.
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Introduction

The vertebrate retina contains two broadly distinguished classes of
photoreceptors, rods and cones. Rods are characterized by low
noise (Barlow, 1956; Baylor et al., 1984; Schneeweis & Schnapf,
2000) and are effective at low light levels when photons are scarce.
On the other hand, they saturate more easily than cones and their
contribution to vision diminishes under daylight conditions
(Aguilar & Stiles, 1954; Tamura et al., 1989; Demontis et al.,
1993; Burns & Arshavsky, 2005; Yin et al., 2006). Cones are noisier
than rods (Schnapf et al., 1990; Rieke & Baylor, 2000; Fu et al.,
2008) but operate without saturation at much higher light levels
(Schneeweis & Schnapf, 1999). Cones are useful for daylight
vision, when there is plenty of light. Across species, the relative
numbers of rods and cones vary enormously, with nocturnal animals
generally having a higher rod-to-cone ratio than diurnal animals
(Walls, 1942).

Within the rod and cone systems, there is additional across-
species variability. Most vertebrates have multiple classes of cones,
distinguished primarily by different spectral sensitivities. The

presence of multiple cone classes enables color vision, as the
relative responses of cones of different classes provide information
about the relative spectrum of the incident light. Across species that
have multiple classes of cones, there are additional variations. These
include the number of distinct classes of cones present (Walls,
1942; Jacobs, 1981), the spectral sensitivities of the individual cone
classes (Bowmaker, 1991; Jacobs, 1996; Jacobs & Rowe, 2004),
and the pattern of how the cones are arranged in the retinal mosaic
(Scholes, 1975; Wassle & Riemann, 1978; Bowmaker & Kunz,
1987; Mollon & Bowmaker, 1992; Hofer et al., 2005). A small
minority of mammalian species that operate in low-light conditions
have only one spectral class of cone (Jacobs et al., 1996) and are thus
monochromats under cone-mediated viewing conditions.

In contrast, most vertebrates have only a single class of rod.
With only a single class of rod, variation in image intensity is
perfectly confounded with variation in image relative spectrum, so
that vision mediated by a single class of rod is monochromatic.
The restriction to a single class is not due to any fundamental bio-
physical constraint, as a few species (e.g., the nocturnal hawkmoth,
Deilephila elpenor) do have retinas with multiple classes of rods
and have been shown behaviorally to have color vision at rod-
mediated light levels (Kelber & Roth, 2006).

Previous authors have speculated about why color vision is rare
at night. Walls (1942), for example, indicates that color vision
could only be useful under conditions where spatial and contrast
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acuity are high and that it would not be useful when photons are
scarce. Rushton (1962) makes a similar statement. To our reading,
however, neither of these authors offer reasoning to support their
assertions. Moreover, it is now known that some plants and bacteria
detect light with low spatial resolution but nonetheless have color
vision (Skorupski & Chittka, 2008), in apparent contradiction to
Walls’ and Rushton’s hypothesis. Also note that human rod-
mediated visual acuity at approximately 5–10 deg eccentricity
exceeds cone-mediated visual acuity at 40–50 deg eccentricity
(Weymouth, 1958, who replots data from Fick), again suggesting
that factors other than those that limit resolution contribute to
whether a retina should be monochromatic or not.

Land and Osorio (2003) articulate what we take, based on an
informal polling of our colleagues, to be the standard intuition on
this topic. This intuition starts with the observation that color vision
depends on the difference between the responses of two receptor
classes. The magnitude of this difference signal will on average be
smaller than that of a luminance signal that arises from the sum of
responses of the two classes or from a single receptor class.1 At the
same time, the net effect of photon and dark noise is the same for
both difference and summed signals. Thus, the idea is that color
vision becomes less useful at low light levels because overall
signal-to-noise drops, and noise swamps the output of an opponent
color channel before it swamps that of a luminance channel.
A related idea was formalized by van Hateren (1993), who showed
that as signal-to-noise drops, optimal postreceptoral processing
favors a luminance channel over a chromatic channel.

Note, however, that neither the standard intuition nor van
Hateren’s (1993) calculations lead immediately to the conclusion
that monochromatic vision is superior to color vision at low signal-
to-noise. To do so requires an analysis that shows not just that the
value of color vision decreases with light level but that a change to
monochromatic vision leads to improved performance. That is, the
fact that a luminance channel carries more information than an op-
ponent color channel tells us neither that a monochromatic retina is
superior to one with multiple receptor types nor that it is not ad-
vantageous to add a color-opponent channel to a luminance channel.

Barlow (1957) argued that the spontaneous photopigment isom-
erization rate of photoreceptors might depend strongly on their
wavelength of maximal sensitivity, with maximal sensitivity at
shorter wavelengths leading to lower noise. This effect would be
expected to occur for fundamental biophysical reasons: short-
wavelength quanta have more energy than long-wavelength quanta,
and this in turn would allow photopigments sensitive to short-
wavelength quanta to have higher energy barriers for isomerization
and be more resistant to thermal fluctuations (Platt, 1956). Barlow
argued that the overall shift in human visual sensitivity toward
shorter wavelengths between cone- and rod-mediated vision (the
Purkinje shift) maximizes absolute sensitivity by minimizing ther-
mal noise. Barlow did not explicitly address trade-offs between color
and monochromatic vision. However, his observation that the
dependence of dark noise on spectral sensitivity has important
implications for differences between daylight and nighttime vision
plays a key role in the analysis we present below. Other closely
related antecedents to the current paper are a treatment of the design
of trichromatic mosaics (Garrigan et al., 2006, 2008) and a treatment
of optimal choice of cone spectral sensitivities (Lewis & Zhaoping,

2006); these authors used an information-theoretic approach and
emphasized the central role played by asymmetries in the informa-
tion available at different wavelengths. We return in the discussion to
review measurements of photoreceptor thermal noise.

Here we assess the efficacy of various choices of the design of
the photoreceptor mosaic, in the context of the vertebrate eye. We
formulate the design question in terms of an explicit model that
defines optimal performance with respect to a specified statistical
ensemble of stimuli. Our model allows us to calculate how well an
ideal observer could estimate the incident image from the pho-
toreceptor responses, and we examine how optimal performance
varies with different aspects of eye design. Although our formu-
lation is very general, we focus here on the performance trade-off
between dichromatic (two receptor classes) and monochromatic
(one receptor class) vision and how this interacts with overall light
level. To address this question, our work also touches on other
aspects of mosaic design. These include choice of photopigment
spectral sensitivity and the packing arrangement of the mosaic.

In the next section, we introduce a general formulation. To
make computational progress, however, we then make a number
of simplifying assumptions. These include restricting attention to
a model environment in which there are just two discrete wave-
lengths and where all images are characterized by the power in
each wavelength at discrete image locations on a line (one spa-
tial dimension.) We consider image ensembles characterized by
Gaussian distributions, evaluate image estimation using a mean
squared error criterion, and do not take into account the energetic
cost of computation. Although a priori it might appear that these
simplifying choices reduce the complexity of the model too
severely, the simplified model is surprisingly rich, and studying it
leads to interesting insight.

General formulation

We start with a general formulation. We model the visual envi-
ronment as an ideal image, which specifies the intensity of light
incident on the eye as a function of two angular spatial dimensions
(x and y) and one spectral dimension (�). For simplicity, we
consider the case where each of these dimensions has been finely
discretized. Thus, the ideal image is specified as I(xi, yj, �k). Note
that in most three-dimensional scenes, the retinal image is not
formed by viewing a planar ideal image. Rather, light reflects to the
eye from objects located at various distances. The ideal image
should be conceived as one that would produce the same retinal
image as the actual illuminated objects in the scene.

Light from the ideal image passes through an optical apparatus
consisting of a cornea, pupil, and lens. Refraction at the interfaces
between the optical elements creates an image on the retina. Ab-
errations in the optics combine with diffraction to blur the retinal
image; the blurring may be characterized by the point spread
function of the optics. In general, the point spread function varies
with wavelength because of chromatic aberration. It also depends
on the pupil area A. In the typical regime where effects of optical
aberrations dominate effects of diffraction, increasing pupil size
increases both the intensity of the retinal image and the degree to
which it is blurred.

We denote the point spread function by PAðxi; yj; �kÞ, where A

is the pupil area. It specifies the spread of light in the retinal image
from a point source, and we assume it to be independent of the
location of that source. The subscriptA denotes the fact that the shape
of the point spread function depends on pupil area. The retinal
image may be computed as the convolution of the ideal image and

1This statement holds as long as the responses of the two receptor
classes are positively correlated.
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the point spread function:

Rðxi; yj; �kÞ ¼ A½Iðxi; yj; �kÞ � PAðxi; yj; �kÞ�:

By convention, PAðxi; yj; �kÞ, is normalized to have unit volume;
the effect of pupil area on overall light level is accounted for
explicitly in the equation above.

The retinal image is sampled by an interleaved array of pho-
toreceptors, with one photoreceptor at each location. The pho-
topigment isomerization rates of each photoreceptor are the
information about the image available to the visual system. We
model the relation between the retinal image and the mean
isomerization rate of a single photoreceptor of class l centered at
location (xm, yn):

�l 5
X

k

ð½Rðxi; yj; �kÞ � Ylðxi; yjÞ�jðxm;ynÞÞSlð�kÞ þ dl:

Here Yl(xi, yj) represents the acceptance aperture of the lth pho-
toreceptor class, Sl(�k) represents the spectral sensitivity of the lth

class, and dl represents the mean number of spontaneous isomer-
izations per second of the ith class. The actual number of
isomerizations in response to an image shown for a duration Dt
is distributed as a Poisson process with mean (�lDt). We take the
task of visual processing as estimating the ideal image from the
noisy array of photoreceptor responses. At this juncture, it is
convenient to express the ideal image, which consists of a finite
array of intensities, as a vector ~i. The estimator may then be
expressed as

î 5 Fð~rÞ;

where î is the estimate of~i and~r is a vector representing the entire
array of noisy responses. The appropriate estimator F( ) depends
on the exact design properties of the model visual system, on the
statistical ensemble of images that will be encountered, on a loss
function that describes how bad it is to approximate any given
ideal image with any particular estimate, and on a decision about
how loss should be aggregated over the statistical image ensem-
ble. Once choices for each of these factors are made, however, the
estimator F() can be chosen to optimize aggregate performance.
Moreover, we can use optimized aggregate performance as
a metric to ask which eye design parameters are best.

To construct an optimal estimator, we turn to Bayesian decision
theory (Blackwell & Girschick, 1954; Berger, 1985; Gelman et al.,
2004). We start by expressing the relation between the ideal image
and noisy response vector as a probability distribution Pð~rj~iÞ. This is
called the likelihood and represents how probable any response
vector is, conditional on knowing the ideal image.

The second step is to express the statistical structure of the
environment as a probability distribution, Pð~iÞ. This is called the prior.
The prior captures what is known or assumed about stimuli in the
model environment (here the ideal image), independent of the ob-
served photoreceptor responses. Bayes’ rule then yields the posterior

Pð~ij~rÞ ¼ CPð~rj~iÞPð~iÞ;

where C is a normalizing constant. The posterior tells us how
probable any particular image is, given the observed photorecep-
tor responses.

To obtain a particular estimate î from the posterior, we need to
specify a loss function Lðî;~iÞ. This function provides the cost of
choosing any estimate î when the actual image is~i. Once the loss

function is given, we can define the Bayes’ risk (Berger, 1985) of an
estimator Fð~rÞ as

RF 5

Z
~i

Z
~r

LðFð~rÞ;~iÞPð~rj~iÞd~r
� �

Pð~iÞd~i:

The Bayes’ risk provides the expected loss associated with
repeated applications of the estimator, when the images leading to
the responses are drawn from the prior distribution Pð~iÞ. To see
this, note that the inner integral takes the expectation over responses
~r given the image ~i (according to the likelihood), while the outer
integral takes the expectation over images (according to the prior).
In the absence of any computational constraints, a widely used
optimality principle is to choose the estimator F() that minimizes
RF. In the development below, however, we will use the notation OF

to denote the quantity to be minimized, with OF 5 RF. Although not
immediately relevant, this change in notation reminds us that there
are alternative possible formulations of optimality. For example, in
the discussion, we briefly treat the possibility of including energetic
cost in addition to performance.

Given a specified likelihood, prior, and loss function, denote by
Fopt() an estimator that minimizes OF and by Oopt

F the corresponding
minimized value. We refer to Oopt

F as the optimized error. The prior
and loss function describe the features of the environment and
organism that define the visual system design problem, while the
likelihood function describes the visual system’s solution. That is,
if we hold Pð~iÞ and Lðî;~iÞ constant, we can regard Oopt

F as a function
of the likelihood. The optimal design is then the one corresponding
to the likelihood Pð~rj~iÞ that minimizes Oopt

F ½Pð~rj~iÞ�. This is the
approach we implement below. At this level of generality, it closely
parallels the approach used by Srinivasan et al. (1982) to consider
the receptive fields of ganglion cells, as well as that developed
recently by Levin et al. (2008) in the context of evaluating the
design of digital cameras.

Simplified formulation

To apply our general framework to mosaic design, and in par-
ticular to the trade-off between color and monochromatic vision,
we make concrete simplifying assumptions. When the simplified
version of the general model is able to predict observed biological
design features, we gain insight about what properties of the
environment are likely to have driven the evolution of these
features. When the simplified version fails to predict the biology,
we gain insight by considering ways in which the model is
oversimplified or, alternatively, ways in which evolution has failed
to arrive at an optimal design.

Image representation and prior

We start with one spatial dimension. Multi-wavelength–band
images of this sort may be represented as column vectors:

~i ¼ ½mx1 ;�1
;mx2 ;�1

; . . . ;mxI ;�1
;mx1 ;�2

;mx2;�2
; . . . ;

mxI ;�2
; . . . ;mx1 ;�K ;mx2;�K ; . . . ;mxI;�K �

T;

where mxi;�k
is the intensity of wavelength �k at pixel i. We have

1 � i � I and 1 � k � K. For our calculations, we used 36 spatial
locations and 2 wavelengths, so I ¼ 36 and K ¼ 2.

Natural images are characterized by high correlations between
the intensities at neighboring spatial locations (Pratt, 1978; Burton
& Moorehead, 1987; Field, 1987; Simonceli, 2005) and between
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intensities in the same location but at different wavelengths
(Burton & Moorehead, 1987; Ruderman et al., 1998).2 These
statistical features of natural images may be captured using
a multivariate Gaussian distribution over multi-wavelength–band
image vectors~i :

Pð~iÞ5 Nð~�prior;KpriorÞ;

where ~�prior and Kprior are the mean and covariance matrix of the
distribution, respectively. We required that Pð~iÞ be separable
between space and wavelength, so that the spatial statistics were
the same in each waveband, up to multiplicative scaling. In
addition, we viewed the distribution Pð~iÞ as induced when
a spatially uniform illuminant reflected from a set of surfaces,
which allowed us to parametrically vary the intensity of the
illuminant. For illuminant intensity ! and mean surface reflec-
tances �m�1

and �m�2
at the two wavelengths, ~�prior was given by

~�prior ¼ !3½ �m�1
3Oð1; IÞ; �m�2

3Oð1; IÞ�T;

where O(a, b) is a matrix of 1s with a rows and b columns. The
covariance matrix Kprior was given by the Kronecker product
KS 5 KC, where KS was the covariance matrix in the spatial domain
and KC was the covariance matrix in the wavelength domain.

We constructed KS to represent a first-order Markov process
(Pratt, 1978), so that

KSðu; vÞ5 r
ðu�vÞ
S ;

where KS(u, v) represents the entry in the uth row and vth column
of KS and rS is the within-wavelength correlation between image
intensities at neighboring locations. The use of a Markov model
allowed us to adjust the correlational structure of the image
ensemble with a single parameter and made more practical
exploring how this structure affects optimal design.

We defined KC as

KC ¼ !23
�2
�1

rC��1
��2

rC��1
��2

�2
�2

� �
;

where ��1
is the standard deviation of reflectances at the first

wavelength, ��2
is the standard deviation of reflectances at the

second wavelength, and rC is the correlation (taken over locations)
of the reflectances at the two wavelengths. This formulation for KC

could be easily generalized to K ¼ 2 wavelengths by treating it as
representing a first-order Markov process over wavelength and
regarding rC as the correlation between neighboring wavelengths.

Image formation and likelihood

Given I pixels and K wavelengths, a render matrix R determines
the responses of each of the L � I photoreceptors in the modeled
retina. The render matrix has L rows and (I 3 K) columns, where
the value of the element in the uth row and vth column is the

responsiveness of photoreceptor u to light at pixel (ðv� 1Þ%I) + 1
of wavelength dv

I
e. Here the symbol % represents the modulus

operator.
To illustrate the idea, consider a retina with four evenly spaced

photoreceptors that alternate between two classes, where each class
is sensitive to only one wavelength. Suppose that there is no optical
blurring and that each photoreceptor is sensitive to light from only
one spatial location and one wavelength. Then, for an environment
where there are eight spatial locations and two wavelengths, we
would have

R ¼

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

��������

2
664

3
775:

The first eight columns of this matrix represent the sensitivity of
each photoreceptor to the first wavelength, while the second eight
represent the sensitivity of each photoreceptor to the second wave-
length. Rows 1 and 3 thus describe the first class of photoreceptor,
and their spatial location is indicated by the column containing
the 1. Rows 2 and 4 represent the second class of photoreceptor in
a similar fashion. This render matrix is shown pictorially in Fig. 1A.
Fig. 1B illustrates the addition of optical blurring to our four-
photoreceptor example. Blurring was computed by centering a
Gaussian at each photoreceptor’s position. Fig. 1C illustrates a
render matrix for a retina containing photoreceptor sensitive to
both wavelengths but to different degrees. The general formulation
of the render matrix allows arbitrary spatial and wavelength sen-
sitivity to be specified.

Given a render matrix R and a draw from the stimulus dis-
tribution, ~i, the photoreceptor responses to ~i are given by the
L-element column vector~r:

~r 5 R~iþ ";

where � represents photoreceptor noise and was a draw from the
Gaussian distribution Nð~�noise;KnoiseÞ. For our simulations, we
used an L-dimensional column vector as ~�noise, where the uth entry
is given by the mean dark noise dl of the photoreceptor represented
by the uth row of the render matrix. The noise covariance matrix
Knoise is an L 3 L diagonal matrix where the diagonal is given by
!3 �m�k

þ dl. With this choice of noise, the likelihood function was
then given by the Gaussian

Pð~rj~iÞ5 NðR~iþ ~�noise;KnoiseÞ:

We used a Gaussian approximation to the more realistic
Poisson noise distribution so that we could leverage analytic
results (see below) that apply for the Gaussian case.

Optimal estimator

Given the prior and likelihood, the optimal estimator depends on
the loss function. The appropriate loss function for biological
vision is almost certainly a highly complicated function of the
image and the estimate, as some estimation errors will have much
more serious consequences for survival and reproduction than
others. Nonetheless, for practical reasons, we simplify in the re-
mainder of the paper by restricting attention to a simple squared
error loss function Lðî;~iÞ5 ~i� î

�� ��2
. Although this loss function

does not fully capture the biologically relevant aspects of estimation

2The literature generally shows not correlations across wavelength but
rather correlations across responses of different classes of cones. The
reported correlations across cone classes arise both because of correlations
across wavelength and because of the broadband spectral sensitivity of the
cones. We have verified, using the data of Ruderman et al. (1998), that the
correlations across wavelength are in fact strong. For two narrowband
images separated by 50 nm, the average correlation is about 0.9. The
correlation remains above 0.8 for wavelength separations of 200 nm.
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error, it has the feature that the estimator that minimizes the
corresponding RF is the mean of the posterior distribution.

Our prior and likelihood distributions are multivariate Gauss-
ian with known mean and covariance. Therefore, the posterior is
also multivariate Gaussian, and its mean and covariance may be
computed in closed form (Gelman et al., 2004). The estimated
image î is given by:

î ¼ ~�posterior ¼ F~r þ~i0; where

F ¼ KpriorR
TðRKpriorR

T þKnoiseÞ�1
and

~i0 ¼ ~�prior � FR~�prior � F~�noise:

Moreover, for our choice of squared error loss, Oopt
F ½Pð~rj~iÞ� is given

by the trace of the posterior covariance matrix:

Oopt
F ½Pð~rj~iÞ� ¼ traceðKposteriorÞ; where

Kposterior ¼ ðK�1
prior þ RTK�1

noiseRÞ�1:

Results

Color versus monochromatic vision at high illumination levels

We begin by comparing the performance of dichromatic and mono-
chromatic vision at a high illumination level. Consider two fixed
classes of photoreceptor, with class 1 expressing photopigment sen-
sitive only to wavelength �1 and class 2 expressing photopigment
sensitive only to wavelength �2. We assume that the mean and
variance of the image are the same for the two wavelengths and that
the two classes of photoreceptors have the same dark noise. These
choices make the model environment and visual system symmetric
with respect to wavelength. To mimic the statistical structure of
natural images, we choose high values for the spatial and wave-

length correlations: rS was set to 0.9 and rC was set to 0.8. We fixed
the optical blur (Gaussian with standard deviation of two pixels),
photoreceptor aperture (three pixels), illumination level (! 5

2000), and dark noise of each photoreceptor class (d1 5 d2 5 1).
These choices lead to a good signal-to-noise ratio (SNR) in individual
photoreceptors. To see this, note that receptor SNR is given by

SNR 5
!3��1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!3 �m�1

þ d1

p :

Here, SNR 5 44.7 or 16.5 dB.
To compare dichromatic and monochromatic vision, we com-

puted Oopt
F for all 4096 possible regularly spaced arrays of 12

photoreceptors on a 36-pixel line. Two of these arrangements, one
with all class 1 receptors and the other with all class 2 receptors,
represent monochromatic vision. The other 4094 arrangements re-
present dichromatic vision with varying choices of class 1 to class 2
receptor ratio and with various arrangements of the two classes. The
question we asked was, which mosaic arrangement leads to the
minimum value of Oopt

F ? The answer is that an alternating array of
class 1 and class 2 receptors, corresponding to dichromatic vision, is
best. Within our model environment then, we have identified a set of
environmental conditions under which color vision is favored.

It is instructive to examine the results in more detail. We begin
by considering the effect of the relative numbers of the two
photoreceptor classes. Following Hofer et al. (2005), we define
a receptor class asymmetry index that groups together mosaics
from the full set of 4096 that share the same number of class 1 and
class 2 receptors. The asymmetry index � is defined as:

� ¼ L1 � L2

L

����
����;

where L1 is the number of photoreceptors of type 1 and L2 is the
number of photoreceptors of type 2.3 The asymmetry index takes on

Fig. 1. Three simple render matrices with varying optical blur and spectral sensitivity. In these examples, we show four photoreceptors,

eight pixels, and two wavelengths. Each row corresponds to one photoreceptor. Columns to the left of the red line correspond to the first

wavelength, while columns to the right correspond to the second wavelength. Within a wavelength, columns correspond to spatial

locations. Darker areas correspond to lower sensitivity, while lighter areas correspond to higher sensitivity. (A) This render matrix

corresponds to the example given numerically in the text, with each photoreceptor sensitive to incident light at a single punctate location and

at a single wavelength. (B) Effect of optical blur. The standard deviation of the Gaussian used to compute optical blur was set to two pixels,

and each photoreceptor is sensitive to one of the two wavelengths. (C) Spatial blur is the same as in B, but photoreceptors are 75% sensitive

to one wavelength and 25% sensitive to the other. Each matrix shown was normalized to have the same maximum intensity for display.

3In using and interpreting this and our other index expressions, we only
consider the case where L is even, a condition that holds for all results
reported in this article.
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a value of 0 for retinas with equal numbers of each photoreceptor
class and a value of 1 for retinas that contain only one class. It is
insensitive to interchange of class 1 and class 2 labels or shuffling of
receptor locations.

For each value of asymmetry index �, Fig. 2A plots the mini-
mum value Oopt

F , with the minimum taken over all arrangements
with that value of �. The plot confirms our statement above that for
these conditions, the best performance (minimum Oopt

F ) is obtained
for � 5 0 (dichromatic). In addition, it shows that the worst
performance is obtained for monochromatic retinas (�5 1). As the
mosaic moves from equal numbers of the two classes to all of one,
performance degrades in a smooth and regular fashion.

One might reasonably argue that the comparison above is too
restrictive, as we considered only receptors with spectral sensi-
tivity confined to one wavelength. More generally, we could
consider monochromatic retinas with other spectral sensitivities.
Given that our model environment has just two wavelengths, we
can express spectral sensitivity through a parameter � that de-
scribes the relative amounts of each of the two photopigments
contained in a given photoreceptor. The calculations above effec-
tively considered only � 5 0 or � 5 1, corresponding to photo-
receptors containing only class 1 or class 2 photopigment. Fig. 2B
shows the effect of allowing other values of � on the performance of
a monochromatic retina. The optimal value of � is 0.5, an equal mix
of the two underlying photopigments. Note, however, that the value
of Oopt

F for this optimal mix (~4.5 3 107) is still considerably higher
than the level of performance obtained with the best dichromatic
retina (~3.5 3 107). Thus, even when spectral sensitivity is
optimized for monochromatic vision, a dichromatic retina is better
than a monochromatic retina, at least for the high illumination
intensity we simulated.

Finally, note that for a given value of the asymmetry index,
there may be multiple mosaics that only differ in how the two

cone classes are arranged. So, for example, given that an equal
number of the two receptor classes leads to best performance, we
can turn to ask how these should be arranged. We defined an
alternation index, �, that captures the extent to which the two
receptors are interleaved in the overall mosaic. The computation of
the alternation index begins with the computation of a raw
alternation index:

�raw ¼
XL�1

n¼1

Dðn; nþ 1Þ;

where D(u, v) 5 1 if the photoreceptors at positions u and v are of
different types and 0 otherwise. The value of �raw is a count of the
number of alternations of receptor type as one moves along the one-
dimensional mosaic. Because the number of possible alternations
depends on the relative number of the two receptor classes, we
convert the raw alternation index to the alternation index � by
taking the percentile ranking of �raw within the set of all possible
arrangements that share the same asymmetry index � and dividing
by 100. This leads to an alternation index that is always in the range
0–1, that takes on a value of 0 when the two receptor classes are
maximally grouped together in the mosaic and a value of 1 when the
two classes alternate as much as possible.

Fig. 2C shows optimized error plotted against alternation index �.
The plot makes it clear that arrangements that interleave the two
photoreceptor classes as much as possible are preferred over less
alternating arrangements. This is true for the optimal value of the
asymmetry index (� 5 0) as well as for other values.

Color versus monochromatic vision across illumination levels

The section above demonstrates conditions where the performance
of a dichromatic retina dominates that of a monochromatic retina.

Fig. 2. Optimized error (Oopt
F ) for equal signal-to-noise case. This figure presents results where the mean and variance of the signals in the two wavelength

bands are the same and where the two classes of photopigment have the same dark noise. (A) Oopt
F is plotted as a function of the asymmetry index, �. For each

value of �, performance is plotted for the particular arrangement with that � that minimized Oopt
F . The two photoreceptor classes had � 5 0 and � 5 1,

respectively, meaning that each contained a completely separate class of photopigment. Best performance is obtained for � 5 0, which corresponds to equal

numbers of the two photoreceptor classes. (B) Oopt
F is plotted as a function of the photopigment mixing parameter, �, for a retina with only one class of

photoreceptor. Best performance is obtained for � 5 0.5, corresponding to an equal mix of the two photopigment types. (C) Effect of regularity on

performance. Each line in the plot shows Oopt
F as a function of the regularity index, �. Each line in the plot corresponds to a different choice of �: 0 (dark blue),

1
6 (blue), 1

3 (light blue), 1
2 (light green), 2

3 (yellow), 5
6 (orange), and 1 (red dot). For each value of� and �, performance is plotted for the particular arrangement that

minimized Oopt
F . In this panel, Oopt

F is plotted in standardized (z-score) units computed separately for each value of �. This allows us to compare the effect of

� for each �without undue expansion of the scale of the y-axis. For each �, the best performance is obtained for a maximally regular arrangement (�5 1). As

in panel A, these calculations were performed for two photoreceptor classes with � 5 0 and � 5 1, respectively. For all panels, illumination intensity (!) was

set to 2000. We set the dark noise for both photopigments to one spontaneous isomerization per unit time. We used a duration of 1 time unit for this and all other

calculations in the article. The mean and variance in number of reflected quanta for both color bands were set to 1. Color correlation (rC) was set to 0.8, and

spatial correlation (rS) was set to 0.9. The standard deviation of the Gaussian blur was set to two pixels, and the photoreceptor aperture was three pixels. All

simulations were performed using 12 photoreceptors and 36 image pixels.
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The standard intuition, as discussed in the introduction, is that this
situation should reverse when light level drops. To investigate, we
repeated the calculations for a range of illuminant intensities !.
Note, by the way, that we are not attempting to study which factors
might mediate the known shift between cone- and rod-mediated
vision. To do so would require adding a model of the differences
between cones and rods to our formulation and then comparing
performance of each system across a range of light levels. Rather,
our present goal is to compare performance of monochromatic and
dichromatic mosaics within a single type of receptor. Given our
focus on what happens at low light levels, this type should be
conceived of as the rods.

Fig. 3 plots the difference in optimized error Oopt
F between the

best monochromatic retina and best dichromatic retina as a function
of light level. For the monochromatic retina, we found the best
value of spectral sensitivity � for each choice of illuminant intensity
! and used this value in the comparisons. In the event, the best value
was always � 5 0.5. For the dichromatic retina, we restricted
attention to the case where each of the two photoreceptor classes
was sensitive only to a single wavelength and used an alternating
arrangement with equal numbers of photoreceptors of each class.
Given the restriction to two classes, the alternating/equal number of
arrangement was in fact the best for every illumination intensity.
The figure shows that at every light level, the dichromatic retina
outperforms the monochromatic retina.

Our calculations do not confirm the standard intuition about
why rod-mediated vision is almost always monochromatic.
Nonetheless, it is worth noting that our calculations are consistent
with some aspects of previous thinking. The core of the standard
intuition is that the advantage for color vision decreases as SNR
drops, and our calculations reveal this effect: the difference in Oopt

F

between monochromatic and dichromatic vision tends to zero with
decreasing SNR. Indeed, this is not surprising in the limit, since
when signal-to-noise reaches zero, useful vision disappears and the
organism’s estimates of the image are optimizing by guessing based
on the mean of the image prior, independent of the receptor
responses. What our results now add is the fact that a decreasing
advantage of color vision does not necessarily translate into an ad-
vantage for monochromatic vision. To understand the selective
advantage for monochromatic vision at night, some additional con-
sideration must be added to the model system. We explore two
possibilities below. One is the statistical characterization of the
image ensemble, and the other is asymmetric signal-to-noise across
the two receptor classes.

Effect of image statistics

All simulations discussed above used rS 5 0.9, rC 5 0.8. Although
this choice reflects a reasonable characterization of natural images,
it is of interest to explore the effect of varying these parameters. Fig. 4
shows the comparison of dichromatic and monochromatic retinal
designs for four choices of rS and rC, with other parameters the
same as used to produce Fig. 3.

The figure shows that dichromatic vision dominates at low
light levels, regardless of spatial and color correlations. Dichro-
matic vision also dominates at high light levels, when rS . rC

(panel B). However, when rS # rC (panels A, C, and D), the high–
light level pattern reverses and monochromatic vision becomes
better at high light levels.

We draw two conclusions from this analysis. First, the trade-off
between dichromatic and monochromatic color vision is quite
sensitive to the statistical structure of the environment. This

insight is consistent with consideration of limiting cases. If the
color correlation rC 5 1, then there is no chromatic variation in
the environment and no added benefit of a second receptor class. On
the other hand, if rS 5 1, there is no spatial variation in the en-
vironment and having multiple receptor classes has clear benefits.
Our calculations show that a fairly rich set of trade-offs is available
across cases intermediate to these two environmental extrema.

The second conclusion we draw is that none of the rS, rC pairs
we considered lead to a trade-off pattern consistent with the
biological observations, making it likely that additional factors
played an important role in the evolution of vertebrate mosaic design.

Asymmetric photopigment dark noise

All of our calculations up to this point have assumed that the two
photopigment classes are equally reliable and that signals in the
two color bands are equally informative. As noted in the in-
troduction, however, for biological photoreceptors, the spontane-
ous isomerization rate might be expected to vary systematically
with the wavelength of peak sensitivity (Platt, 1956; Barlow,
1957). For this reason, we explored the effect of specifying dif-
ferent levels of dark noise for the two photopigments.

Fig. 5 shows, for a single intermediate illumination intensity, the
effects of making one photopigment 100 times noisier than the other,
by setting the dark noise ratio d1:d2 5 100. This manipulation
introduces an asymmetry into the results. Unlike the symmetric
case, the best dichromatic photoreceptor arrangements now contain
more of the lower–dark noise photoreceptors (Fig. 5A). Similarly,
the best monochromatic arrangements contain more of the lower–
dark noise photopigment (Fig. 5B). As for the symmetric case, how-
ever, Fig. 5C shows that maximizing the alternation index (� 5 1)
optimizes performance.

Fig. 3. Comparison of dichromatic and monochromatic vision for equal

photoreceptor signal-to-noise and high color and spatial correlations. This

figure compares the optimized error for the best dichromatic and mono-

chromatic arrangements. The dichromatic arrangement was constrained to

have � 5 0 and � 5 1 for the two photoreceptor classes and had � 5 0 and

� 5 1. The monochromatic arrangement had � 5 0.5. The plot shows the

difference between monochromatic and dichromatic Oopt
F as a function of

illumination intensity. Positive values correspond to the case where the

dichromatic arrangement has a smaller Oopt
F . For this case, dichromatic

vision is better than monochromatic vision at all light levels. Signal and

photoreceptor parameters were the same as in Fig. 2.
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The most striking new result to emerge from the asymmetric
dark noise calculations is shown in Fig. 6. Recall that dichromatic
arrangements always outperformed monochromatic arrangements
for the symmetric case, regardless of SNR (Fig. 3). With the
inclusion of asymmetric dark noise, dichromatic arrangements still
outperform monochromatic arrangements at high illumination
intensities. As illumination intensity decreases and SNR drops,
however, monochromatic arrangements lead to lower optimized
error. This effect can be explained by the following intuition. At
high light levels, photon noise dominates dark noise and the
asymmetry between photopigment dark noise has a negligible
effect. In this case, the extra information about the image trans-
duced by a dichromatic retina is the dominant factor. At low light
levels, dark noise becomes the dominant noise source, and the noise
advantage of the less noisy photopigment drives the optimal design.

The crossover illumination intensity, below which monochro-
matic vision dominates and above which dichromatic vision
dominates, depends on the relative reliability of the two photo-
pigments. As one photoreceptor class becomes more unreliable
relative to the other, the illumination intensity at which color
vision becomes beneficial increases (not shown).

In Fig. 7, we systematically explore how the optimal dichro-
matic and monochromatic photoreceptor arrangements change with
illumination intensity. In each panel, the three colored lines
correspond to three d1:d2 ratios. For reference, the case where
d1 5 d2 is shown in dark blue. For this case, independent of

illumination intensity, the best dichromatic arrangements have
equal numbers of the two photoreceptor classes, arranged in an
alternating pattern (� 5 0, � 5 1), while the best monochromatic
arrangements have equal amounts of the two photopigments
(� 5 0.5). As d1:d2 is increased, optimal arrangements exhibit
asymmetries in the relative numbers of photoreceptors (or amounts
of photopigment) at lower illumination intensities. The figure shows
that the rate at which the arrangements return to having equal
number of photoreceptors of each class (or equal amounts of the
two photopigments) as a function of illumination intensity depends
on the d1:d2 ratio. The shifts in optimal spectral sensitivity with
light level for monochromatic mosaics (panel B) are an analog,
within our model system, of the Purkinje shift as analyzed by
Barlow (1957). For all conditions studied, it is always best to
interleave photoreceptors as much as possible (panel C, � 5 1).

Introducing an asymmetry in the level of dark noise for dif-
ferent photopigments is not the only way to produce an asymme-
try in the SNR of the output of different photoreceptor classes.
Such asymmetries can also be produced if the mean light level is
different across wavelengths; if there is a difference in the degree
of retinal absorption across wavelengths (as might be produced by
protective ultraviolet-absorbing macular pigment); if there is a
difference in the quantal efficiency of different photopigments; or
if the variance in the signals at different wavelengths differs. We would
expect that effects similar to those shown above for the asymmetric
dark noise case would also be produced by signal asymmetries.

Fig. 4. Comparison of color and monochromatic retinas for varying color and spatial correlations. All panels compare Oopt
F for the

alternating dichromatic and best monochromatic arrangements. The dichromatic arrangement was constrained to have � 5 0 and � 5 1 for

the two photoreceptor classes, with � 5 0 and � 5 1. For monochromatic arrangements, the optimal value of � was allowed to vary with

illumination intensity. The plot shows the difference between monochromatic and dichromatic Oopt
F as a function of illumination intensity.

Positive values correspond to the case where the dichromatic retina is better. Spatial correlation (rS) was set to either 0.15 (left panels) or

0.85 (right panels). Color correlation (rC) was set to either 0.15 (top panels) or 0.85 (bottom panels). A red dashed horizontal line

representing equal error for the monochromatic and dichromatic arrangements is drawn in panels containing a crossover from

monochromatic to dichromatic vision being optimal. All signal and photoreceptor parameters were the same as in Fig. 2. Note that the scale

of the x-axis is chosen differently in each panel, so as to better illustrate the transitions between dichromatic and monochromatic advantage.
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Indeed, we explored this explicitly for the case of unequal signal
variance and found a pattern of results similar to that shown in
Figs. 5 and 6. In the interest of brevity, we do not present those
results here.

Optimizing dichromatic spectral sensitivity

In the calculations above for dichromatic mosaics, we considered
only photoreceptor classes with � 5 0 and � 5 1, respectively.
Across species, there is variation in the degree of overlap between
photoreceptor spectral sensitivities between photoreceptors of
different classes. For example, in goldfish the peak sensitivities
of the M and L cones are noticeably more separated, at 530 and
620 nm, respectively, than in primates, where the peak sensitivities
are approximately 530 and 560 nm, respectively (Bowmaker,
1991). We wondered what the optimal choices of spectral sensi-
tivity were in our model system.

To study this while avoiding parameter explosion, we consid-
ered how Oopt

F varied with a parameter 	, where the photoreceptor
sensitivities of the two classes depend on 	 through �1 5 	 and �2 5

1 � 	. We studied mosaics with equal numbers of receptors from
each class in an alternating arrangement. Note that when 	 5 0.5,
the dichromatic arrangement is equivalent to the monochromatic
arrangement with � 5 0.5, while 	 5 0 and 	 5 1 reduce to the
dichromatic arrangements studied above.

Fig. 8 plots Oopt
F as a function of 	, for the alternating

dichromatic arrangement, at a single illumination intensity. The
computed function has two minima, at the symmetric locations
	 5 0.27 and 	 5 0.73.4 Adding some degree of spectral overlap
between the two photoreceptor classes improves performance, but
too much overlap has a significant deleterious effect. Indeed, in the

limit of 	 5 0.5, this is simply a reexpression of the fact that
monochromatic retina does worse than a dichromatic retina.

Fig. 8 shows results for the case of symmetric receptor dark
noise. In the asymmetric case, the same value of 	 characterizes
optimal design for high light levels (since at high light levels, dark
noise is dominated by photon noise). Because our results in Fig. 6
were obtained for 	 5 0 (or equivalently 	 5 1), it is possible that
the advantage for monochromatic vision at low light levels shown
in the figure would reverse if the calculations were performed with
optimized dichromatic spectral sensitivity. We ruled out this
possibility by verifying that monochromatic vision continues to
dominate at low light levels in the asymmetric dark noise case, even
for 	 5 0.27 (or equivalently 	 5 0.73).

More generally, one could consider whether any dichromatic
retina outperforms a monochromatic retina at low light levels, for
the asymmetric dark noise case. Exploring all possible choices of
spectral sensitivity for the two receptor classes for all possible
arrangements is computationally prohibitive. But since a mono-
chromatic retina represents a limiting case of a dichromatic retina
where the spectral sensitivities of the two classes become progres-
sively more similar, and where the asymmetry index approaches
unity, we can ask whether making a monochromatic retina a just
little bit dichromatic improves performance or worsens it. To do
so, we compared the performance of a monochromatic retina with
all receptors containing the low–dark noise photopigment to that
of a retina where a small amount (10%) of the high–dark noise
photopigment had been added to a single photoreceptor in the
array. We found that for the asymmetric dark noise case, the purely
monochromatic retina led to superior performance at low illumina-
tion levels. This in turn suggests that, indeed, the purely mono-
chromatic retina represents a global optimum in design.

Discussion

Animals have evolved sense organs that are near-optimal for de-
tecting and measuring changes in the environment. For example,

Fig. 5. Optimized error (Oopt
F ) for unequal dark noise case. This figure presents results where the mean and variance of the signals in the two wavelength bands

are the same but where the dark noise of class 1 photopigment is 100 times greater than that of class 2 photopigment. (A) Oopt
F is plotted as a function of the

asymmetry index, �. The two photoreceptors had � 5 0 and � 5 1, respectively. Best performance is obtained for �51
6, which corresponds to an arrangement

containing five class 1 photoreceptors for every seven class 2 photoreceptors. (B) Oopt
F is plotted as a function of the photopigment mixing parameter, �, for

a retina with only one class of photoreceptor. Best performance is obtained for � 5 0.32, which corresponds to a mix of 32% class 1 photopigment and 68%

class 2 photopigment. (C) Effect of regularity on performance. Each line in the plot corresponds to a different choice of �: 0 (dark blue), 1
6 (blue), 1

3 (light blue),
1
2 (light green), 2

3 (yellow), 5
6 (orange), and 1 (red dot). For each value of � and �, performance is plotted in standardized (z-score) units computed separately for

each value of �. For all values of �, best performance is obtained for a maximally regular arrangement (� 5 1). As in panel A, these calculations were

performed for two photoreceptor classes with � 5 0 and � 5 1, respectively. For all panels, illumination intensity (!) was set to 75. The mean and variance in

number of reflected quanta for both color bands were set to 1. Color correlation (rC) was set to 0.8, and spatial correlation (rS) was set to 0.9. The standard

deviation of the Gaussian blur was set to two pixels, and the photoreceptor aperture was three pixels. All simulations were performed using 12 photoreceptors

and 36 image pixels.

4The symmetry arises because for the case studied, there is no effect of
reversing the labels given to the two photoreceptor classes. For this reason,
only half of the computed function is shown in the plot.
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rod photoreceptors can reliably transduce the energy of a single
quantum of light (Baylor et al., 1979); hair cells in the ear are
sensitive to deflections as small as the radius of a single hydrogen
atom (Sellick et al., 1982); and olfactory sensory neurons can
respond to the arrival of a single molecule of odorant (Schneider,
1969).

More generally, many properties of sensory systems have been
successfully understood as near-optimal solutions to information
uptake and processing problems. For example, the design of a fly’s
compound eye has been shown to represent an optimal trade-off
between spatial resolution and sensitivity to contrast (Snyder et
al., 1977); the spectral properties of primate cone photoreceptors
optimize discrimination of fruit from foliage (Regan et al., 2001);
properties of retinal ganglion cells optimize information trans-

mission down the optic nerve (Buchsbaum & Gottschalk, 1983;
Atick, 1992; Atick et al., 1992; van Hateren, 1992, 1993; von der
Twer & MacLeod, 2001; Koch et al., 2004); and adaptation
maximizes the use of limited neural dynamic range across changes
in environmental conditions (Laughlin & Hardie, 1978; Walraven
et al., 1990).

Optimality calculations provide a principled null model against
which to benchmark the performance of sensory and other
information processing systems (Geisler, 1987; Watson, 1987;
Brainard, 1993). In addition, showing how a feature of a biological
system is closely matched to predictions derived from consider-
ations of optimality provides a satisfying, if speculative, answer to
the question of why that particular feature evolved.

In this article, we develop a theoretical methodology to eval-
uate the quality of different choices of retinal photoreceptor mosaic.
Our method is based on Bayesian decision theory (Blackwell &

Fig. 6. Comparison of dichromatic and monochromatic vision for unequal

photopigment dark noise and high color and spatial correlations. We

compare Oopt
F for the alternating dichromatic and best monochromatic

arrangements. The dichromatic arrangement was constrained to have � 5 0

and � 5 1 for the two photoreceptor classes and had � 5 0 and � 5 1. The

optimal value of � for the monochromatic arrangement was allowed to vary

with illumination intensity. The plot shows the difference between mono-

chromatic and dichromatic Oopt
F as a function of illumination intensity.

Positive values correspond to the case where the dichromatic arrangement

has a smaller Oopt
F . For this case, monochromatic vision is better at low light

levels, and color vision is better at high light levels. Signal and photo-

receptor parameters were the same as in Fig. 5.

Fig. 7. Best (A) asymmetry index, (B) mixing parameter, and (C) alternation index, as a function of illumination intensity (!). For all

panels, class 1 photopigment is as reliable as class 2 photopigment (blue), 4003 more reliable than class 2 photopigment (cyan), or

10003 more reliable than class 2 photopigment (red). Class 1 photopigment had a dark noise of one spontaneous isomerization per unit

time. Signal and photoreceptor parameters were the same as in Fig. 2. Note that in panel C, all three curves lie on top of each other.

Fig. 8. Effect of spectral sensitivity. This figure plots Oopt
F as a function of the

spectral sensitivity parameter 	, for the alternating arrangement (�5 0, �5 1),

at a single illumination intensity (! 5 1000). The optimal values of 	 are

0.27 and 0.73, corresponding to mixes of 27% of one photopigment and 73%

of the other. Aside from illumination intensity and photopigment mixing

parameters, the signal and photoreceptor parameters were the same as in

Fig. 2. Since this figure is symmetric about 	 5 0.5, we restrict the domain

displayed to 0 # 	 # 0.5.
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Girschick, 1954; Berger, 1985; Gelman et al., 2004). Similar
underlying logic was employed by Srinivasan et al. (1982) in the
context of understanding the receptive fields of retinal ganglion
cells, and our general formulation closely parallels that developed
independently by Levin et al. (2008) to evaluate the design of
digital cameras.

We applied our method in the context of a simplified model
system to investigate three fundamental questions about retinal
design. First, we showed that for dichromatic retinas, regular
arrangements that maximally alternate between the two types of
photoreceptors lead to better performance than less regular ar-
rangements. Second, introducing overlap between the spectral
sensitivities of the photoreceptors of dichromatic retinas can
improve performance. Third, when we compare dichromatic and
monochromatic retinas, we find that which is optimal is quite
sensitive to the specific parameters chosen within our model
system. In the symmetric case where the different photoreceptor
types have the same level of intrinsic noise and the different
wavelengths carry the same amount of signal, a dichromatic retina
yields best performance at all SNRs, when the correlations
between neighboring image locations are higher than those
between neighboring wavelength bands. To obtain results that
mirror what is typically found in biological systems (mono-
chromatic vision for low–signal-to-noise conditions and color
vision for high–signal-to-noise conditions), we had to introduce an
asymmetry between the SNRs of the two photoreceptor classes.

Measurements of photoreceptor dark noise

A number of laboratories have measured photoreceptor dark noise
for receptors with different pigment spectral sensitivities. For our
analysis here, the most relevant measurements are those for rods,
which mediate vertebrate vision at low light levels. Baylor et al.
(1984) showed that thermal-like events dominate the dark noise of
primate rods, suggesting strongly that at the lowest light levels, it is
thermal noise rather than later noise that sets the limit on
performance. Ala-Laurila et al. (2004) measured the activation
energy for 12 visual pigments varying in �max and found that
activation energy decreased with �max, although the decrease was
shallower than the 1/�max dependence that would be predicted if the
only factor involved was the energy of photons at wavelength of
peak sensitivity. This result does not directly show that receptor
dark noise depends on �max but does confirm a key feature of the
theory that predicts such dependence. More recently, Ala-Laurila
et al. (2007) estimated thermal noise rates for two forms of
rhodopsin in isolated salamander rods and concluded that the noise
was larger for the form with longer �max. Taken together, these two
results make it highly plausible that there are fundamental dark
noise asymmetries across rod photoreceptors with different wave-
lengths of peak sensitivity, as Barlow (1957) hypothesized.

Rieke and Baylor (2000) compared dark noise in salamander S
and L cones and found that the noise in L cones was much greater.
For L cones, they concluded that dark noise was dominated by
thermal isomerizations. For S cones, other noise sources dominated.
Their results are consistent with a dependence of dark noise on 1/
�max. On the other hand, Schneeweis and Schnapf (1999) found
little difference in the dark noise levels of primate M and L cones,
perhaps because the dark noise in these receptors is dominated by
sources other than thermal isomerizations. It is probably wise to
keep in mind that across receptor types and species, the relationship
between �max and dark noise may not be simple. For our present
purposes, however, the crucial point is that at the lowest light levels,

asymmetries in rod thermal noise across receptor types seem likely
to play an important role in retinal design.

Relation to other work: Color vision at night

As noted in the introduction, other authors have considered why
monochromatic vision pervades at low light levels. Although our
calculations here do not contradict the core observation of what
we have called the standard intuition on this matter (van Hateren,
1993; Land & Osorio, 2003), they show that the standard intuition
alone is insufficient and requires more careful elaboration. Indeed,
in the absence of any asymmetry in the noise properties of
photoreceptor types or in the signal carried by different image
wavelengths, a dichromatic retina can outperform a monochromatic
retina at all SNRs. This conclusion holds for the case where the
spatial correlation between neighboring image locations is higher
than the color correlation across neighboring image wavelengths.

We are, however, able to show that monochromatic vision
dominates dichromatic vision at low light levels if we introduce an
asymmetry across photoreceptor types or between the statistics at
different image wavelengths. Such asymmetries then interact with
SNR to drive a shift in optimal mosaic arrangement. The critical
role of the noise asymmetry parallels Barlow’s (1957) explanation
of the Purkinje shift. As discussed in the previous section, there is
good reason to believe that there are in fact asymmetries in rod
noisiness with changes in photopigment �max. Less is known about
possible asymmetries in the signals carried at different image
wavelengths, but these may also exist. Thus, our analysis provides
a plausible explanation for the rarity of color vision at night but
only with the assumption of asymmetries.

Note that our work does not contradict van Hateren’s (1993)
results, as there are several key differences between his analysis and
ours. First, we explicitly compare the performance of interleaved
dichromatic retinas with that of monochromatic retinas. This is
quite different than asking, for any particular retina, whether the
optimal processing of the output of that retina tends toward
luminance processing at low light level. Second, considering the
properties of the optimal single channel, as van Hateren did, is
different from asking whether adding a second channel might
improve performance.

Finally, we note that we can replicate van Hateren’s (1993)
basic conclusion within the context of our current model. We asked,
for the case where the two receptor classes have equal SNR, how
the reconstruction of luminance (both receptor types stimulated
together) and chromatic (the two receptor types stimulated in
opposition) signals compared as a function of SNR (results not
shown). We found, consistent with van Hateren, that the magnitude
of the reconstructed chromatic signal decreased relative to that of
the reconstructed luminance signal as overall SNR dropped. This
calculation is consistent with the standard intuition. Interestingly, it
is also consistent with the observed achromatic interval found for
cone-mediated foveal viewing in humans: as light level drops, there
is a regime where dim test lights can be detected but not be judged
in color (Walraven, 1962; Graham & Hsia, 1969). Massof (1977)
presents a model where detection is limited by quantum fluctua-
tions that account for this interval.

Relation to other work: Mosaic regularity

In all our calculations, we found that the best arrangement of the
multiple (in this case two) receptor classes is regular, in the sense
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that it maximizes the number of alternations between classes
across the mosaic. This result is consistent with the regular mosaic
layout found in fish (Scholes, 1975; Bowmaker & Kunz, 1987) and
with the regular arrangement of the S cone submosaic in humans
(Curcio et al., 1991) but not with the quasi-random arrangement of
L and M cone submosaics in primates (Mollon & Bowmaker, 1992;
Hofer et al., 2005).

A few investigators have considered the effect of photoreceptor
irregularity on performance. Most of this work is in the context of
the spatial arrangement of monochromatic mosaics rather than the
arrangement of interleaved submosaics. The principles considered
in the earlier work, however, are of a general nature and might
reasonably be taken to apply to the current case.

Bossomaier et al. (1985) concluded that mosaic irregularity had
a deleterious effect on performance, consistent with our general
conclusion. Their analysis, however, was based on the assumption
that the visual system processed the output of the irregular mosaic
as if the receptors were in fact regularly spaced. In this case, the
effect of irregular spacing may be mimicked by the addition of
noise to the output of a regular mosaic, and the addition of such
noise would degrade performance. Recent modeling of the appear-
ance of very small flashed spots (Brainard et al., 2008), however,
indicates that the human visual system does take the fine spatial
structure of its mosaic into account. In any case, the key difference
between the development of Bossomaier et al. (1985) and the one
presented here is that their conclusion hinges on the assumption that
the visual system’s postreceptoral processing is suboptimal, while
ours evaluates each mosaic arrangement on the assumption that
postreceptoral processing optimally accounts for the location of
each photoreceptor.

Yellott (1982, 1983) concluded, on the other hand, that mosaic
irregularity can improve visual performance. He analyzed the
nature of the set of spatial aliases for different mosaic arrange-
ments. (Two different images are aliases for a mosaic if they
produce the same response in every photoreceptor in the mosaic.)
For regularly arranged mosaics, regular spatial patterns at high
spatial frequencies (e.g., high–spatial frequency sinusoids) have as
aliases other regular spatial patterns at lower spatial frequencies
(e.g., low–spatial frequency sinusoids). For irregularly arranged
mosaics, regular high–spatial frequency patterns alias in to irreg-
ular low–spatial frequency patterns that appear as spatial noise.
Yellott pointed out that a visual system that incorporated knowl-
edge of the spatial structure in natural scenes would be better able to
filter the low–spatial frequency aliases produced by an irregular
mosaic than the those produced by a regular mosaic, suggesting
a possible advantage for irregular mosaics.

Yellott’s argument could be formalized and evaluated within the
framework presented here. The key extension to current analysis
required for this would be to choose an image prior that incorporates
a preference for structured images; the Gaussian priors we used
capture only the second-order structure of natural images and do not
allow expression of higher order structure that favors, for example,
the presence of edges. Whether such an analysis would lead to
a rationale for irregular mosaics within our simple model system
remains an open question of considerable interest.

Finally, Hsu et al. (2000) argued that in the presence of electrical
coupling between receptors of different classes, irregularity in the
interleaving of these classes would reduce the deleterious effects of
the coupling on color vision. DeVries et al. (2002) complemented
this line of thinking by observing that the same coupling could
reduce noise at the receptor outputs by integrating over multiple
receptors and that the cost of such coupling for spatial vision was

not significant in the presence of optical blur. We have not explored
these results in the context of our model system. Doing so would
require imposing specific processing steps after the receptors (e.g.,
modeling electrical coupling) and then asking how the added
processing constraint affected retinal design.

Relation to other work: Spectral sensitivity

A number of authors have considered the interaction of spectral
properties of the photic environment and cone spectral sensitivity.
The theoretical approach taken by Lewis and Zhaoping (2006) is
quite similar to ours, although their performance criterion is one of
maximizing information rather than minimizing Bayes’ risk (see
below). These authors conclude that the �max of the human L cone
is not optimally located, as more information would be transmitted
if its peak sensitivity were at a higher wavelength. As with our
work, a key factor that drives their calculations is asymmetry
between the information available for photoreceptors with different
wavelengths of peak sensitivity. In particular, they note that as
overall SNR decreases, the optimal placement of both L and M
cones tends toward the wavelength that provides maximum signal-
to-noise. This is analogous to our conclusion that the optimal
mosaic tends toward monochromatic as signal-to-noise decreases.
One important difference between our work and theirs is that we
explicitly evaluate spatial and spectral performance jointly, whereas
they do not treat spatial variation.

Other articles in this general tradition (Lythgoe & Partridge, 1989;
Chittka & Menzel, 1992; Osorio & Vorobyev, 1996; Regan et al.,
2001; Cummings, 2004) analyze performance on a particular color
discrimination task thought to be important for the organism (e.g.,
discriminating fruits from foliage for primates; Regan et al., 2001) as
a function of choice of spectral sensitivity. This work shares with our
current analysis emphasis both on the statistical properties of stimuli
that will be encountered by the visual system and on optimizing
performance. The specifics of the analyses differ, with our work
considering a highly simplified visual environment. This allows us to
explore a wider range of parametric interactions, at the cost of
departing further from ecologically valid measurements.

Relation to other work: Theory

Our approach to optimal design employs formalism taken from
Bayesian decision theory. An alternative and closely related
approach is to consider not minimization of expected loss but
rather maximization of transmitted information, as measured in
bits. Analyses based on information theory have been successfully
employed to explain features of postreceptoral retinal design (e.g.,
Atick, 1992; Brenner et al., 2000; Balasubramanian & Berry, 2002;
Koch et al., 2004). In the current context, the difference between the
two approaches is straightforward to understand. Given a fixed
prior distribution over images, the design that maximizes informa-
tion transmission is the one that leads to a posterior distribution with
minimum entropy (Cover & Thomas, 1991). Entropy is a measure
of the uncertainty in the outcome of draws from a distribution.
A posterior distribution with low uncertainty, generally speaking, is
also one that will lead to low estimation error with respect to
a specified loss function. However, the relation between entropy and
expected loss need not be monotonic (Thomson & Kristan, 2005).

Given that minimizing expected loss and maximizing infor-
mation transmitted do not always lead to the same conclusion, one
could reasonably ask which approach is more appropriate. The
attraction of minimizing expected loss is that it allows explicit
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inclusion of what matters to the organism, and it is for this reason
that we have used the Bayesian approach here. At the same time,
we concede that the specific choice of squared error loss is at best
a crude approximation to what matters to most organisms and in
the current work serves as a placeholder where more realistic loss
functions can be inserted when such are available. This general
point, that information theory tends to be insensitive to the metric
structure of the stimulus space, is discussed by Luce (2003). We
did verify that the main features of the results reported in this article
(i.e., the monochromatic–dichromatic comparisons shown in Figs.
3 and 6) continue to hold when the calculations are repeated with
maximizing transmitted information as a criterion. The one excep-
tion we found is that increasing the overlap in spectral sensitivity,
which improves performance for a dichromatic retina as assessed
by minimizing expected squared error loss (Fig. 8), does not in-
crease information transmitted.

An advantage of information theory that drives its use in many
studies of neural systems is that there are techniques for mea-
suring the information carried by a neuron that do not require
knowledge of the analytic form of the stimulus ensemble or of the
representation coded by the neural response. Thus, for example,
the information about natural images conveyed by a particular
ganglion cell may be estimated by measuring the cells’ response to
a sequence of presented natural images, without need to develop
an explicit algorithm for estimating images from the response
(e.g., Brenner et al., 2000; Balasubramanian & Berry, 2002; Koch
et al., 2004). In this sense, information theory is an approach that
complements the one we have taken here. Indeed, in related work,
we are considering features of mosaic design using information
theoretic methods (Garrigan et al., 2006, 2008).

Future directions

The model system explored in this article was very simple.
Nonetheless, it allowed us to express many of the pieces required
for a full theory of optimal mosaic design. These are a specification
of the statistical properties of the visual environment, specification
of the relation between an image and its sensory representation,
and specification of the goal of the visual computation as a loss
function. Given these, we could explore the performance of dif-
ferent design choices. Despite the fact that that the model system
we used is simple, we were able to demonstrate a number of
conclusions. The first is that classic arguments for why mono-
chromatic vision is favored over color vision at low signal-to-
noise levels are incomplete. That is, we were able to demonstrate
conditions where color vision provides better performance as
signal-to-noise drops to zero. Moreover, our analysis suggested
additional factors that when incorporated into the analysis do yield
a shift from color to monochromatic vision as SNR drops. Second,
within the context of our model system, regular mosaics dominate
irregular mosaics. We have not yet found factors that would
predict a robust advantage for the quasi-random tiling of L and M
cones found in primate retina. Here our analysis clarifies not what
we understand but what we have yet to make sense of.

Because our model system is simple, an important goal for
future work is to generalize the analysis and bring it closer to
biological realism. Obvious generalizations include adding a sec-
ond spatial dimension, additional wavelengths (i.e., full spectra),
time and motion, and additional receptor classes. There is no
conceptual obstacle to these generalizations, but given present
computing resources, it is not possible to explore these added
dimensions exhaustively, as we could for the simple case. The

challenge is to pick specific manipulations of interest. Moving in
this direction would also allow incorporation of additional factors
such as whether the statistics of spectra shift systematically
between day and night, something we have not yet considered.
These generalizations would also enable us to draw the numerical
values used for spectral sensitivity and dark noise more directly
from biological measurements; the present calculations are suffi-
ciently abstracted from real retinas that we thought such an effort
premature.

Computations cost energy, and energy considerations are
nontrivial for the design of biological systems (Balasubramanian
et al., 2001; Laughlin, 2001; Balasubramanian & Berry, 2002;
Laughlin & Sejnowski, 2003). The general framework we have
presented could be extended to include considerations of energetic
cost. If we think of the loss function as expressing the cost of
misestimation in terms of its ultimate effect on reproductive
success, we can also conceive of a function that expresses the cost
of computing an estimate from the receptor responses. Denote by
the energetic cost function CFð~rÞ the energetic cost incurred when
the estimator F() acts on input~r. In analogy to the Bayes’ risk, we
can then associate an expected computational cost with the
estimator:

CF ¼
Z
~i

Z
~r

CFð~rÞPð~rj~iÞd~r

2
4

3
5Pð~iÞd~i:

Once computational cost is specified, a more general optimal-
ity principle would be to choose an estimator F() that minimizes
OF 5 RF + CF.5 Note that this formulation for computational cost
would also allow for consequences of the time taken to do the
computation (Koch et al., 2006) and for variations in cost that arise
from variation in the size and mass of the computational apparatus
(Laughlin & Sejnowski, 2003). It might be reasonable to make
initial steps toward including energetic cost by examining the
number of multiplications and additions required to closely approx-
imate the optimal estimator for each mosaic.

As noted in the Results section, we have not explicitly modeled
differences between rods and cones, such as differences in the
source and level of receptor dark noise (see above), or between
properties of receptors across species. Because our formulation is
very general, such differences could be included. Modeling the
properties of rods and cones would, for example, allow us to
address questions such as at what light level a visual system that has
both rods and cones should switch from one to the other. Similarly,
comparing the details of rod properties and other retinal design
factors across species might provide insight as to why some species
do exhibit rod-mediated color vision (Land & Osorio, 2003; Kelber
& Roth, 2006).

Even within our simple one-dimensional, two-wavelength sys-
tem, we did not explore all possible parametric manipulations. For
example, one could explore trade-offs between optical blur and
pupil aperture or effects of overall receptor density. One could also
try to refine the statistical model of image structure by incorporating
a characterization of the edge-like features that are pervasive in
natural images (Simonceli, 2005) or the model of the likelihood
function (e.g., by incorporating a Poisson rather than Gaussian noise
model; L. Paninski, personal communication). Finally, it would be of

5The use of a simple sum is appropriate on the assumption that the
measures of loss and energetic cost can be expressed in the same units. This
seems reasonable in principle but may be difficult to achieve in practice.
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interest to explore effects of varying the loss function, for example, to
emphasize either luminance or chromatic estimation error. This
would be a first step to modeling species differences in what stimuli
are most ecologically relevant. More generally, examining properties
of the estimator itself could yield insights about how postreceptoral
processing should be configured to optimally extract information
from interleaved receptor mosaics.
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