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Interpreting semantic clustering effects in free recall

Jeremy R. Manning1,2 and Michael J. Kahana3

1Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
2Department of Computer Science, Princeton University, Princeton, NJ, USA
3Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA

The order in which participants choose to recall words from a studied list of randomly selected words
provides insights into how memories of the words are represented, organised, and retrieved. One
pervasive finding is that when a pair of semantically related words (e.g., ‘‘cat’’ and ‘‘dog’’) is embedded in
the studied list, the related words are often recalled successively. This tendency to successively recall
semantically related words is termed semantic clustering (Bousfield, 1953; Bousfield & Sedgewick, 1944;
Cofer, Bruce, & Reicher, 1966). Measuring semantic clustering effects requires making assumptions
about which words participants consider to be similar in meaning. However, it is often difficult to gain
insights into individual participants’ internal semantic models, and for this reason researchers typically
rely on standardised semantic similarity metrics. Here we use simulations to gain insights into the
expected magnitudes of semantic clustering effects given systematic differences between participants’
internal similarity models and the similarity metric used to quantify the degree of semantic clustering.
Our results provide a number of useful insights into the interpretation of semantic clustering effects in
free recall.

Keywords: Free recall; Clustering; Semantic; Simulation; Latent semantic analysis.

The free recall paradigm has participants study lists

of items*typically words*and subsequently recall

the studied items in the order they come to mind.

Because the participants are instructed to recall the

items in the order they come to mind, the recall

sequence reflects how the items are stored and

retrieved from memory. By analysing recall se-

quences during free recall researchers have uncov-

ered a number of trends that many participants

exhibit. For example, the recency and primacy

effects refer to the well-established tendency of

participants to show superior recall of items

from the ends, and to a lesser extent from the

beginnings, of the studied lists (Deese & Kaufman,

1957; Murdock, 1962). Another well-studied

phenomenon, termed temporal clustering, refers

to participants’ tendencies to successively recall

items that occupied neighbouring positions in the

studied lists (Kahana, 1996). In addition to ordering

recalls by the study positions of the items, partici-

pants also exhibit striking effects of semantic

clustering (Bousfield, 1953; Bousfield & Sedgewick,

1944; Cofer et al., 1966; Jenkins & Russell, 1952;

Romney, Brewer, & Batchelder, 1993), whereby

recall of a given item is more likely to be followed

by recall of a similar or related item than a

dissimilar or unrelated one.
The primacy, recency, and temporal clustering

effects may be measured objectively by examin-

ing the relative probabilities of recalling or
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transitioning between items that appeared at each
serial position on a studied list. By contrast,
measuring semantic clustering requires making
assumptions about what each word means to each
participant. For example, by one metric, succes-
sively recalling the words ‘‘dog’’ and ‘‘collar’’
might serve as evidence of semantic clustering,
since the two words might be expected to appear
in similar contexts: the two words might be
described as falling under the general category
of ‘‘things related to common household pets’’.
However, by another metric, successively recal-
ling ‘‘dog’’ and ‘‘collar’’ might serve as evidence
against semantic clustering, because dogs should
fall under the category of ‘‘mammals’’ whereas
collars should fall under the category of ‘‘inani-
mate objects’’. These issues are further compli-
cated if one considers that the associations an
individual forms between words, and the mean-
ings ascribed to the words, likely depend on that
individual’s subjective experiences.

Over the past decade a number of techniques
have been developed for systematically quantify-
ing the relative meanings of words. Latent seman-
tic analysis (LSA; Landauer & Dumais, 1997)
derives a set of pairwise similarity values by
examining the co-occurrences of words in a large
text corpus. Another measure of semantic simi-
larity, termed the Google similarity distance
(Calibrasi & Vitanyi, 2005), uses the Google
search engine to compute the number of web
pages containing both word x and y, relative to
the total number of pages containing each word
individually; a similar metric relies on Wikipedia
links to measure the similarities between topics
(Milne & Witten, 2008). A fourth technique,
Word association spaces (WAS; Nelson, McEvoy,
& Schreiber, 2004; Steyvers, Shifrin, & Nelson,
2004) derives its similarity values from a series of
free association experiments in which participants
were given a cue item and responded with the
first word that came to mind. The goal of each of
these techniques is to compute a set of pairwise
similarities between the words that bears some
resemblance to the similarities ascribed by a
‘‘typical’’ person.

Although the similarity values produced by
each of these myriad similarity metrics are some-
what related, the pairwise correlations between
the measures tend to be surprisingly low. For
example, for the set of 308 highly imageable
nouns listed in Table 1, the Pearson’s correlation
between the LSA- and WAS-derived pairwise
semantic similarity values is r�0.23 (Spearman’s

r�0.18). The full distributions of similarity
values derived from the two metrics are shown
in Figure 1, Panels A and B. The relation between
LSA and WAS similarity is illustrated in Panels C
and D. If these seemingly objective semantic
similarity metrics based on huge text corpora and
experimental datasets fail to agree on a set of
pairwise semantic similarities, how could one
possibly expect to study effects of semantic orga-
nisation in individual participants? In particular,
how should the magnitudes of semantic clustering
effects be interpreted? In the present manuscript
we use simulations to study these questions.

METHODS

Analysis

Our simulations are intended to estimate the
maximum expected magnitude of semantic clus-
tering effects in free recall. Our approach is
motivated by the notion that, although we may
measure the degree of semantic clustering using
semantic similarity metric f(), the semantic simi-
larity metric that would have best described a
given participant’s ‘‘true’’ internal semantic simi-
larity model is a different metric, gp().1 Assuming
that the participant exhibits perfect semantic
clustering according to metric gp(), should we
expect that the participant would also exhibit
reliable semantic clustering effects according to
metric f()?

In most free recall studies gp() is unknown. In
theory one could estimate gp() for a given
participant by having the participant make judge-
ments about the semantic similarities between each
pair of studied words. Then one could use gp() to
quantify semantic clustering in that participant’s
recall sequences. However, this method becomes
impractical as the number of study items grows,
since the number of pairwise comparisons grows
with the square of the number of study items.

Rather than derive each participant’s gp()
empirically, we instead construct a pool of
100,000 simulated participants, whose gp()s are
known. Each simulated participant encounters
many word lists, and we simulate a sequence of

1 Here the functions f() and gp() are mappings from two

words, a and b, onto scalar similarity values. Note that f() and

gp() need not produce the same mapping. The subscript p

serves as a reminder that participants’ true internal similarity

models may differ across individuals.
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recalls after each studied list. As described below,
the recall sequences are constructed to maximise
semantic clustering*according to gp()*for each
participant. We then measure the degree of
semantic clustering according to a different simi-
larity metric, f(). We quantify the degree of
semantic clustering using the semantic clustering
score (Polyn, Norman, & Kahana, 2009), de-
scribed in the next section. The distribution of
semantic clustering scores according to f() tell us
about the range of semantic clustering scores we
should expect to observe in real participants,
given that we use the ‘‘wrong’’ semantic similarity
model to measure semantic clustering.

Semantic clustering score

The semantic clustering score, developed by
Polyn et al. (2009), is intended to quantify the
extent to which a given recall sequence shows
evidence for semantic clustering (according to
metric f()), taking into account the set of words
that appeared on the studied list. For each recall
transition we create a distribution of semantic
similarity values*using f()*between the just-
recalled word and the set of studied words that
have not yet been recalled. We next generate a
percentile score by comparing the semantic simi-
larity value corresponding to the next item in the
recall sequence with the rest of the distribution.
Specifically, we calculate the proportion of the
possible similarity values that the observed value
is greater than, since strong semantic clustering
will cause the observed similarity values to be
larger than average. When there is a tie we score
this as the percentile falling halfway between the
two items. In this way if a participant always chose
the closest semantic associate, then their semantic
clustering score would be 1. A semantic clustering
score of 0.5 indicates no effect of semantic
clustering. The semantic clustering score must
be computed independently for each studied list.
We obtain a single semantic clustering score for
each simulated participant by averaging the
semantic clustering scores across all lists that the
participant encountered.

Generating recall sequences that
maximise the semantic clustering score

As defined above, the semantic clustering score
according to metric gp() is maximised (i.e., equal

to 1) if the participant always chooses to next
recall the closest semantic associate to the just-
recalled word. Suppose the simulated participant
has just studied a list of n words. We would now
like to generate a k-item recall sequence (where
k5n) that maximises the semantic clustering
score according to gp().2

We begin by selecting the first recalled word,
i1, at random from the set of n studied words. We
then create a pool of the n � 1 remaining words
from the studied list. We order the words in the
pool by their semantic similarity*according to
gp()*to i1. We select the word with the highest
semantic similarity as the next recall, i2, and
remove i2 from the pool. We then re-order the
n � 2 remaining words in the pool by their
semantic similarities to i2 and select the word
most similar to i2 to be recalled next. This process
continues until the kth word is recalled. Because
this procedure ensures that each recall will be
followed by the most similar word that is yet to be
recalled, by definition it will maximise the seman-
tic clustering score according to gp().

RESULTS

We ran two batches of simulations. In the first
batch we constructed gp()s for each of 100,000
simulated participants according to the LSA-
derived similarities between each pair of words
in Table 1. We computed each word’s LSA vector
by applying the LSA algorithm (Landauer &
Dumais, 1997) to the Touchstone Applied Science
Associates, Inc. (TASA) corpus. We then com-
puted the similarity between each pair of words
by measuring the cosine of the angle between the
corresponding LSA vectors. In our simulations, all
of the gp()s were identical, and gp(x,y) corre-
sponded to the cosine of the angle between the
LSA vectors for x and y. For each participant we
also constructed 50 lists of 15 unique items each,
drawn from the word pool. We then generated
five-item recall sequences after each list that
maximised each participant’s semantic clustering
scores according to LSA (see Generating recall
sequences that maximise the semantic clustering
score). Finally, we computed each participant’s
mean semantic clustering score using WAS simi-
larity (Nelson et al., 2004; Steyvers et al., 2004).

2 For all of the simulations reported in this manuscript, we

used n�15 and k�5. However, the techniques developed

here are equally applicable to arbitrary choices of n and k.

SEMANTIC CLUSTERING IN FREE RECALL 3

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
6:

41
 3

0 
M

ay
 2

01
2 



The distribution of simulated WAS-derived se-

mantic clustering scores is shown in Figure 1E.

We found that the mean semantic clustering score

was 0.636. The analysis yields the distribution of

maximum expected semantic clustering scores

(computed using WAS similarity), given that

participants’ ‘‘true’’ internal models of semantic

similarity are perfectly described by LSA.

The second batch of simulations used the

identical set of 15-item lists, presented to the

same simulated participants. However, for the

second batch of simulations we generated recall

sequences that maximised the semantic clustering

scores according to WAS-derived similarity. We

then measured each participant’s mean semantic

clustering score using LSA-derived similarity.

TABLE 1

Simulation word pool

ANT CAR EGG HORSE PALM SEED STREET

APE CARD ELF HOSE PANTS SHARK STRING

ARK CART FACE HOUSE PARK SHEEP SUIT

ARM CASH FAN ICE PASTE SHEET SUN

AXE CAT FARM INK PEA SHELL SWAMP

BADGE CAVE FENCE JAIL PEACH SHIELD SWORD

BAG CHAIR FILM JAR PEAR SHIP TAIL

BALL CHALK FISH JEEP PEARL SHIRT TANK

BAND CHEEK FLAG JET PEN SHOE TAPE

BANK CHIEF FLAME JUDGE PET SHRIMP TEA

BARN CHIN FLEA JUICE PHONE SIGN TEETH

BAT CLAY FLOOR KEY PIE SINK TENT

BATH CLIFF FLUTE KING PIG SKI THREAD

BEACH CLOCK FOAM KITE PIN SKUNK THUMB

BEAK CLOTH FOG LAKE PIPE SKY TIE

BEAN CLOUD FOOD LAMB PIT SLEEVE TOAD

BEAR CLOWN FOOT LAMP PLANE SLIME TOAST

BED COAT FORK LAND PLANT SLUSH TOE

BEE COIN FORT LAWN PLATE SMILE TOOL

BELL CONE FOX LEAF POLE SMOKE TOOTH

BENCH CORD FROG LEG POND SNAIL TOY

BIRD CORN FRUIT LIP POOL SNAKE TRAIN

BLOOM COUCH FUDGE LOCK PRINCE SNOW TRASH

BLUSH COW FUR MAIL PURSE SOAP TRAY

BOARD CRANE GATE MAP QUEEN SOCK TREE

BOAT CROW GEESE MAT RAIN SOUP TRUCK

BOMB CROWN GIRL MAZE RAKE SPARK VAN

BOOK CUBE GLASS MILK RAT SPEAR VASE

BOOT CUP GLOVE MOLE RIB SPONGE VEST

BOWL DAD GOAT MOON RICE SPOON VINE

BOX DART GOLD MOOSE ROAD SPRING WALL

BOY DEER GRAPE MOTH ROCK SQUARE WAND

BRANCH DESK GRASS MOUSE ROOF STAIR WAVE

BREAD DIME GUARD MOUTH ROOM STAR WEB

BRICK DITCH HAND MUD ROOT STEAK WEED

BRIDGE DOCK HAT MUG ROPE STEAM WHALE

BROOM DOG HAWK MULE ROSE STEM WHEEL

BRUSH DOLL HEART NAIL RUG STICK WING

BUSH DOOR HEN NEST SAIL STONE WOLF

CAGE DRESS HILL NET SALT STOOL WOOD

CAKE DRUM HOLE NOSE SCHOOL STORE WORLD

CALF DUCK HOOF OAK SEA STORM WORM

CANE EAR HOOK OAR SEAL STOVE YARD

CAPE EEL HORN OWL SEAT STRAW ZOO

We used the set of pairwise similarities for this set of 308 highly imageable nouns in our simulations. This word pool has been used in

several published free recall studies (Manning, Polyn, Baltuch, Litt, & Kahana, 2011; Sederberg, Kahana, Howard, Donner, & Madsen,

2003; Sederberg, Schulze-Bonhage, Madsen, Bromfield, Litt et al., 2007; Sederberg, Schulze-Bonhage, Madsen, Bromfield, McCarthy,

et al., 2007).
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The distribution of simulated LSA-derived se-
mantic clustering scores is shown in Figure 1F.
We found that the mean semantic clustering score
was 0.662. This second batch of simulations yields
the distribution of maximum expected semantic
clustering scores (computed using LSA similar-
ity), given that participants’ ‘‘true’’ internal mod-
els of semantic similarity are perfectly described
by WAS.

We also found that the semantic clustering
scores computed using LSA were slightly
(but reliably) higher than those computed using
WAS*paired t-test: t(99,999) �270.65, pB10�6;
mean difference: 0.026. This indicates that differ-
ent semantic similarity metrics used in analyses of
semantic clustering may introduce slight biases.
We expect that these biases are related to the
form of the semantic similarity distributions
derived from each measure (see Figure 1) and
to the particulars of how each measure is derived.
Given that the clustering scores obtained using
any given model of semantic similarity are likely

to be only noisy reflections of any true patterns in
the data, one should use multiple models of
semantic similarity whenever possible. If one
observes (or fails to observe) a similar pattern
of clustering scores across experimental condi-
tions when using multiple semantic similarity
models (e.g., LSA and WAS), then it is less likely
that the observed patterns simply reflect the
mismatches between participants’ internal simi-
larity models and the similarities assumed by the
scoring model. Note that our analysis makes no
attempt to distinguish whether the LSA- or WAS-
derived similarities more accurately reflect parti-
cipants’ internal similarity models.

Across the 200,000 simulated recall sequences,
and combining across the two semantic similarity
measures, the observed semantic clustering scores
ranged from 0.522 to 0.757. These scores reflect
the range of maximum clustering scores one
would expect, given that participants’ internal
semantic similarity models differed systematically
from the similarity measure used to quantify the
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Figure 1. Two measures of semantic similarity. (A) Distribution of the pairwise LSA-derived semantic similarity values for the

words shown in Table 1. (B) Distribution of the pairwise WAS-derived semantic similarity values for the same words. (C) Scatterplot

comparing the LSA- and WAS-derived similarity values. Each dot corresponds to a single comparison between two words. Pearson’s

correlation: r�0.255, pB10�3; Spearman’s correlation: r�0.184, pB10�3. (D) Binned variant of the scatterplot in panel C.

We first divided the distributions of LSA-derived pairwise similarity values into 100 equally sized bins (the centres of the bins are

plotted along the x-coordinate). The heights of each dot reflect the mean WAS-derived similarity values for the same pairs of words

(error bars denote9SEM). The binning reveals an approximately monotonic relation between the two similarity measures. Binned

Pearson’s correlation: r�0.875, pB10�3; Spearman’s correlation: r�0.954, pB10�3. (E), (F): Semantic clustering simulations.

(E) We generated five-item recall sequences that maximised the WAS-derived semantic clustering score for 100,000 simulated

participants presented with 50 fifteen-item lists each (see text for details). The panel shows the proportion of simulated participants

that yielded the mean LSA-derived semantic clustering scores shown along the x-axis. (F) Identical to panel E, but here we

generated recall sequences that maximised the LSA-derived semantic clustering scores, and plot the distribution of observed mean

WAS-derived clustering scores. The same 5,000,000 randomly chosen 15-item lists were used in both panels. The dotted grey lines

indicate the means of each distribution.
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degree of semantic clustering. This shows that
even participants who exhibit strong semantic
clustering may still show clustering scores near
0.5. Similarly, it is exceedingly unlikely that one
would observe semantic clustering scores near 1
when aggregating over many lists, as this would
suggest a near-perfect match between the partici-
pant’s internal similarity model and the (arbitra-
rily chosen) scoring model.

DISCUSSION

Our simulations yield four valuable insights into
the interpretation of semantic clustering during
free recall. First, it is important to use multiple
measures of semantic similarity if one is to obtain
an accurate estimate of whether participants are
semantically clustering their recalls. Second, an
observed near-chance clustering score does not
necessarily indicate a true lack of semantic
clustering, but may instead indicate a mismatch
between a participant’s internal similarity model
and the scoring model. For this reason the precise
clustering score one observes is difficult to inter-
pret, and one would be better served by instead
comparing distributions of clustering scores ob-
tained across conditions in an experiment or
across participants. Third, an observed near-
ceiling clustering score (�0.757 by our simula-
tions) must be interpreted with caution, as it is
unlikely for the scoring model to precisely match
participants’ internal model of semantic similar-
ity. Rather, a near-ceiling clustering score may
reflect the specific sequence of words presented
to the participant, or the specific structure of the
experiment. In such cases one might use simula-
tions analogous to those we present here to gain
insights into the range of clustering scores one
might expect under various models (e.g., high
semantic clustering vs low semantic clustering).
Fourth, when fitting computational models that
aim to predict semantic clustering, it is important
to take the potential mismatch between partici-
pants’ internal similarity models and the scoring
model into account. One might accomplish this by
using, for example, an LSA-derived scoring model
while using a WAS-derived internal similarity
model in their simulation (or vice versa) as we
have done here.

We have focused on a single semantic cluster-
ing metric, the semantic clustering score (Polyn

et al., 2009), and two semantic similarity metrics,
LSA (Landauer & Dumais, 1997) and WAS
(Nelson et al., 2004; Steyvers et al., 2004). Our
use of these metrics is not intended to imply that
they are the only, or even necessarily the best,
such measures. Rather, we simply found the
semantic clustering score to provide a convenient
means of quantifying semantic clustering. We
chose the two semantic similarity metrics as
representative examples from the broader range
of metrics discussed in the introduction. LSA
represents one technique for deriving similarity
values via automated text processing. By contrast,
WAS derives similarity values using experimental
data from psychological experiments. The specific
choice of clustering and similarity metrics used in
analyses of experimental data should reflect the
goals of the experiment and/or analyses.

In addition to measuring participants’ tenden-
cies to semantically cluster their recalls, a number
of recent studies have begun to examine how
individual words are represented by measuring
the patterns of neural activity evoked when a
word or image is viewed (e.g., Mitchell et al.,
2008; Just, Cherkassky, Aryal, & Mitchell, 2010;
Shinkareva et al., 2008). There is some evidence
that similarities in the neural patterns evoked by
thinking about a given pair of words predict the
tendencies of participants to successively recall
the words, given that both appeared on the
studied lists (Manning, Sperling, Sharan, Rosen-
berg, & Kahana, in press.). In this way one might
objectively infer each participant’s internal se-
mantic similarity model by measuring their neural
activity as they studied and recalled list items.

Studying semantic clustering effects requires
making assumptions about participants’ internal
semantic similarity models. In the absence of
pairwise judgements or neural data, researchers
must rely on measures that attempt to capture the
semantic relations between words without know-
ing the specifics of participants’ subjective experi-
ences, or about the way their brains represent the
words. Our simulations demonstrate the degree of
semantic clustering that can be expected, given
that the semantic model used to measure the
clustering effects is not a perfect match for
participants’ internal models.

Manuscript received 21 September 2011

Manuscript accepted 27 March 2012

First published online 31 May 2012
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