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Abstract

Navigation of novel environments requires an ability to acquire, store, and
recall spatial information. A navigator can use this information to generate
novel, efficient paths between arbitrarily-chosen locations in the environ-
ment. In the first section of this thesis I review relevant recent research
into exploration and spatial learning. I examine biologically-inspired com-
putational models of those processes, and examine the use of virtual reality
experiments as a way to test such models.

In the second section I present materials, methods, and results for two
virtual reality experiments. In these experiments, subjects play virtual taxi-
cab drivers, delivering passengers to stores in a virtual town. In Experiment
One, subjects navigate a small town and learn to generate optimal paths
after two or three deliveries. In Experiment Two, the size of the town is
increased, and a corresponding drop in performance is observed.

The third and largest section of this thesis presents a model aimed at
exploring the general mechanisms involved in learning the virtual towns. I
propose a model whereby (a) subjects build a cognitive map of their en-
vironment which becomes more detailed with experience, and (b) they use
information stored in the cognitive map to generate delivery paths between
arbitrary points in their environment. The model is based on an ideal naviga-
tor, which predicts performance of the perfect subject. For Experiment One,
the ideal navigator model successfully predicts the delivery path distance for
between 60 and 70 percent of the observed deliveries. For Experiment Two,
the ideal navigator predicts between 40 and 50 percent of the delivery path
distances observed. By systematically degrading the abilities of the ideal
navigator, I account for the drop in performance in the larger environment.

After parameter tuning, the performance of the degraded ideal navigator
model fits mean learning curves for both experiments (using a different set
of parameters for each experiment). In addition, the model is able to cluster
environments in each experiment based on an estimated difficulty rating.
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Introduction and Background

Efficient navigation of an environment requires knowing “which way to go” when given a
choice. In some situations (such as driving down a one-lane highway), the navigation path is
implied by the structure of the environment (continue to follow the road). At an intersection,
however, choosing which fork to take may require additional information. Tolman (1948)
describes two mechanisms by which this decision might be made. One possibility is that
navigation is simply a matter of reacting to immediately available sensory input, such as a
street sign or a particularly distinctive rock formation on the side of the road. The second
possibility is that navigators build up a cognitive map of their environment, which encodes
relationships between arbitrary locations. As the environment is explored, the cognitive
map becomes more detailed.

The discovery of hippocampal place cells, which are responsive to specific locations
within an environment irrespective of view (Ekstrom et al., 2003; Muller et al., 1996;
O’Keefe, 1979), and postsubicular head-direction cells, which are responsive to particular
headings (Robertson et al., 1999; Taube et al., 1990a,b), may provide biological evidence
for a cognitive map representation (Muller et al., 1996). Parahippocampal view cells, which
respond when specific landmarks are seen (Ekstrom et al., 2003; O’Mara & Rolls, 1995),
and goal-responsive cells (Ekstrom et al., 2003) suggest biological mechanisms by which
navigationally useful sensory information may be exploited to build up the cognitive map.

Computational models of spatial exploration and of goal seeking may implement ana-
logues of known biological structures (such as navigationally-useful cells) while augmenting
them with reasonable assumptions. In this way, computational models are able to pro-
vide mathematically sound hypotheses which can then be tested experimentally once the
technology to do so becomes available. In the remainder of this section, I examine several
existing computational models of navigation. These models each contribute to design de-
cisions made in the creation of my own model of human spatial navigation. I explore the
use of virtual reality as a means of testing assumptions made in computational models of
human navigation. In the next section, I present two virtual reality experiments which will
provide a test bed for my computational model. In the third section of this thesis, I define
an ideal navigator model which predicts performance of the perfect subject. While the ideal
navigator model predicts delivery path distance of between 60 and 70 percent of Experi-
ment One deliveries, it is unable to generalize to the second experiment. A new model is
proposed in which the ideal navigator’s vision and memory are degraded. The degraded
ideal navigator is able to account for mean observed performance in both experiments.

Computational Models

Gerstner-Abbott Model Using Simple Place Cells

Gerstner & Abbott (1997) model a network of place cells in the rat hippocampus,
responsive to a predefined area within a simulated test environment. As the distance from

Special thanks to my thesis adviser, Professor Robert Sekuler, and also to Professor Michael Kahana,
for their help and guidance. Thank you to Josh Jacobs, Igor Korolev, and Matt Mollison for their helpful
suggestions and for their work developing the experimental paradigms on which the Magellan model is based.
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Figure 1. A network of place cells created by the Gerstner-Abbott model (figure reproduced from
Gerstner & Abbott, 1997). Pointers arise from place cell receptive field shifts, and indicate the
target’s direction, taking walls and obstacles into account.

the center of each place cell’s receptive field increases, the cell’s response falls off according
to a Gaussian function. These receptive fields overlap such that several place cells will
respond in parallel when the model is at a particular location in the environment. When
multiple cells are active at the same time, the model’s location is encoded as a weighted
function of the center of the mass of active cells, taking into account the difference in activity
across cells.

Initially, the encoded location corresponds to the actual spatial location of the model.
As the model explores the environment randomly, the receptive field of each place cell is
tuned according to a Hebbian learning rule. The result is a shift in encoded location away
from walls and obstacles, toward one or more targets in the environment. The inconsistency
between the physical spatial location of the model and the place cell-encoded location pro-
vides a pointer which can be used to generate a path to a target. The place cell network
of the Gerstner-Abbott model may be thought of as a type of cognitive map of the envi-
ronment. Instead of encoding spatial information per se, the shift in place cell receptive
fields encode navigation paths, which provide pointers to the target from arbitrary loca-
tions in the environment. Figure 1 illustrates the receptive field shift for a simple sample
environment.

Discussion. The Gerstner-Abbott model makes several simplifying assumptions which
are unrealistic for a model of human spatial navigation. The model explores its environment
randomly, moving in straight-line paths until being deflected by a wall or obstacle. Although
random exploration is justifiable in the context of this highly-simplified model, navigation
data from human subjects, as presented in Section Two of this thesis, show that human
navigation is highly efficient. Therefore, a more complete model of human navigation should
make use of a non-random foraging strategy.
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Figure 2. (a.) Place and view graph created by the Schölkopf-Mallot model, with places
pi(i = 1, ..., 7) and views vj(j = 1, ..., 12). (b.) Associated directed place graph with corridors
cj corresponding to views vj . An optimal path may be generated between any vertices in the place
graph. Figures reproduced from Schölkopf & Mallot (1995).

The inspiration for the Gerstner-Abbott model is a hungry animal scavenging for food.
As such, the learning mode is triggered by a food-based reward system. Learning via
receptive field tuning occurs when the animal is looking for food. Once the animal has
eaten, this learning mode shuts off. The authors suggest that an attention-activated learning
mode might replace (or augment) the food-based reward system in a more general model.
In the context of the experiments presented in Section Two, an attention-activated learning
mode would imply that the learning mode was constantly activated, since subjects are
always looking for either a new passenger or a target store in the virtual environment. This
suggests that environment learning should take place both while searching for a passenger
and while seeking a target store.

Schölkopf-Mallot Directed View Graph Model

Schölkopf & Mallot (1995) propose a model which uses a graph representation of maze-
like environments. Views at particular locations are stored at vertices.1 Branches, which
join adjacent vertices, represent temporal relationships between views. This view graph is
built as the model explores. At first, exploration is random, but as an exploration matrix
(which stores locations in the maze that have been visited) is filled in, the model tends
toward unexplored regions.

Information about paths between arbitrary locations in the maze can be extracted from
the view graph, regardless of whether the paths have previously been traversed. In some

1A vertex is the point at which two branches of a graph meet. For a concise introduction to graphs and
graph theory, see Storer (2002).
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cases, empty cells in a view graph’s adjacency matrix2 can be filled in as “expected” views,
using existing local views and associations between them. A place graph, which represents
relationships between locations in the maze, may be extracted from the view graph. The
place graph may be used to find a path between two arbitrary locations. Provided that
the model has explored enough of the environment, the path will be optimal (the shortest
possible path). In a 12-view maze (see Figure 2), 110 steps are enough to generate all
possible shortest paths between all points in the maze. (See Schölkopf & Mallot (1995) for
more statistics regarding shortest path versus learning time.)

Discussion. The model’s view graph provides enough information to generate optimal
paths between environment locations. In this way, a cognitive map representing the spatial
layout is not explicitly needed to navigate an environment. This finding is useful, but may
not be universal, since there are a discreet number of possible moves in a maze environment,
whereas there are a potentially infinite number of moves in an open environment. The
virtual environments presented in Section Two are open environments, since the number
of possible views is infinite for all practical purposes. Nevertheless, these environments
may be approximated by place and/or view graphs, where each intersection is represented
by a vertex and each road is represented by a branch. In order to simplify complex open
environments, it is sometimes useful to find a maze-like approximation. In order to simplify
path generation and view computations, my ideal navigator model navigates a graph-like
approximation of the virtual town.

The mechanisms underlying goal path generation are left out of the Schölkopf-Mallot
model. It is shown only that it is possible to generate an ideal path connecting two points,
given the view graph, using a brute force algorithm in which many paths are tested. Given
that human subjects in Experiments One and Two were observed to generate goal paths
quickly and efficiently, it is unlikely that they employed a brute force technique.

The exploration strategy implemented by the Schölkopf-Mallot model attempts to build
up the exploration matrix quickly by tending toward unexplored locations. In my ideal
navigator model, I add to this by having the model explore nearby unexplored locations
before far away unexplored locations. In this way, the goal-directed ideal navigator attempts
to minimize the goal path distance by avoiding “zig-zags” back and forth between non-
contiguous unexplored patches.

Voicu’s Hierarchical Cognitive Map Model

Voicu (2003) presents a model based on a hierarchical cognitive map, in which spatial
information is organized in three networked layers of varying resolution, which are built up
as the model explores (see Figure 3a). Initially, exploration is random. The model assigns a
unique code to each landmark for encoding associations. As the model explores, associations
are strengthened between all landmarks which are either currently perceived or currently
in the model’s working memory. As associations are strengthened, the exploration strategy
adapts so that previously encoded landmarks are avoided. Once the cognitive map contains
associations between at least ten landmarks, the model changes its exploration strategy
such that it tends toward landmarks with the fewest associations.

2An adjacency matrix is a tabular representation of all edges in a graph.
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The lowest layer of the hierarchy is the most detailed, containing associations between
all encoded landmarks. Once the lowest layer is in place, the second layer is constructed.
Initially, the second layer is assigned landmarks from the first layer whose associations are
strongest. Associations between these landmarks are constructed using information from
the first layer. Each of the landmarks, l, in the second layer are activated; this activation
spreads according to existing associations, until the total activity is bounded by a set
range. If the last landmark to be activated with strength s is x, the association between
l and x is assigned strength s. Similarly, the third layer is constructed from the second
layer using the second layer landmarks with the strongest associations. If all landmarks in
the second layer have equally strong associations, no third layer is constructed (see Figure
3b). Interactions between the three layers allow for complex representations of clusters of
landmarks in working memory.

In order to generate a path to a goal landmark, the goal landmark is activated in
the cognitive map. The activation spreads until it reaches the model’s current location.
The model simply follows the activation gradient to the goal from its current position.
Landmarks closer to the goal will have greater activation.

Discussion. This model’s hierarchical cognitive map is useful for large environments
with many landmarks, but becomes impractical (or redundant) for smaller environments
such as those presented in Section Two. In addition, the detailed, multi-step foraging
strategy is more focused on obtaining a detailed representation of the environment than
locating a target within the environment quickly or efficiently. A realistic model for human
navigation in a goal-directed task (in which navigators are motivated to perform quickly)
might sacrifice a layered hierarchy for a less robust (but faster to build) flat cognitive map.

Virtual Reality as an Experimental Paradigm

Desktop virtual reality has been popularized over the last decade with hit video games
such as DOOM, Quake3, and Unreal Tournament4. In recent years, it has become possible
to construct custom-built virtual reality games using open source tools. The high level of
configurability implied by custom-built games makes them ideal for experimentation.

The discovery that navigationally-useful cells are activated during a virtual reality navi-
gation task (Ekstrom et al., 2003) presumably implies that subjects treat virtual navigation
similarly to real-world navigation. In fact, performance is significantly degraded if the il-
lusion of natural movement is taken away, for example by reducing the rate of optic flow
(Kirschen et al., 2000).

In the remainder of this thesis, I describe two virtual reality experiments in which
subjects play taxicab drivers in a small town. For each delivery I define an ideal path
distance, which approximates the shortest delivery path possible. The difference between
the ideal path and the observed delivery path is called the excess path length, and may be
used as a performance metric (this approach was used in Newman et al., 2005).

Recently, ideal performers have been used as benchmarks for behavioral data (Robles-
De-La-Torre & Sekuler, 2004). Behavioral data from Experiment One suggest that subjects
themselves are behaving as ideal navigators. I present an ideal navigator model which

3DOOM and Quake are trademarks of idSoftware.
4Unreal Tournament is a trademark of Epic Games
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(a)

(b)

Figure 3. Voicu’s hierarchical cognitive map representation of an environment. Figures reproduced
from (Voicu, 2003). (a) Landmarks are represented by circles. Thin lines represent first-layer
connections. Medium lines represent second-layer connections. Thick lines represent third-layer
connectios. (b) Landmarks are represented by the numbers 1 through 30. On the left, solid lines
indicate layer one connections and dashed lines indicate layer two connections; there are no layer
three connections. On the right, the layers are organized as an ordered tree.
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explores efficiently and learns the environment layout quickly. For Experiment One, the
ideal navigator correctly predicts excess path length for between 60 and 70 percent of the
deliveries made.

In Experiment Two, size of the virtual environment is increased by 41%, effectively
increasing spatial memory demands on subjects. In this larger environment, the ideal
navigator is only able to predict excess path length of between 40 and 50% of the deliveries.
This suggests that a critical component responsible for subject performance is missing
from the ideal navigator model. After adjusting assumptions about the ideal navigator’s
vision and memory, the model is able to account for mean performance observed in both
experiments.

Materials and Methods

Experiment One

Newman et al. (2005) present a desktop virtual reality paradigm,5 in which subjects play
taxicab drivers in a small town. During a testing session subjects picked up and delivered
passengers in two environments. Random assignment to one of five conditions determined
the similarity of the first environment to the second environment. For the purposes of
this thesis, I am concerned only with the first environment tested.6 Because my proposed
model does not take into account learning across conditions, it only makes sense to look at
environments which have not been seen before.

Subjects

One hundred twenty-one Brandeis University undergraduates (59 males, 56 females)7

participated for monetary compensation with an additional performance-based bonus.

Construction of Virtual Towns

Each virtual town was laid out on a 5× 5 orthogonal grid of roads, with one uniquely-
textured landmark centered on each block. Twenty-one of these landmarks were buildings,
which varied slightly in width and greatly in height. Buildings were surrounded by lawn
to prevent subjects from driving up to them. The remaining four blocks contained stores,
which were of equal size, and were surrounded by pavement. Deliveries were always made
to stores. The outer boundary of the town was marked by a texture-mapped stone wall; no
other visual information could be seen beyond the boundary.

Each block was surrounded by drivable road. If the road is taken to be one virtual
unit wide, each block measured 2× 2 virtual units, and the environment measured 16× 16
virtual units. Each building occupied approximately one block (4 square units) at its base,
while each store occupied a 0.7 × 0.7 × 0.35 unit rectangular prism. Of the 256 square
units occupied by the environment, 100 were covered by blocks containing landmarks, and
156 were covered by drivable road. Before the start of the subject’s session, the landmarks

5A similar version of this paradigm is discussed in earlier work (see Caplan et al., 2003; Ekstrom et al.,
2003).

6Newman et al. (2005) refer to this condition as Experiment Two, Environment One.
7Gender data for 8 of the subjects were not recorded.
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Figure 4. Experiment One: Sample layout for a randomly generated town. Buildings are shown in
black; stores are shown in red. Roads, shown in white, surround each block. Note: this figure is not
drawn to scale.

chosen to occupy each block were randomly selected and arranged, with the constraint that
no two stores could be found in adjacent blocks. A sample layout is shown in Figure 4.

Navigation and Gameplay

Subjects controlled the virtual taxicab using the four arrow keys (↑, ↓,←,→) on a
standard 101-key keyboard. If more than one key was pressed, only the most recent key
press would apply. The turning rate was 20◦/sec, and driving speed was constant at 1.17
units/sec. The screen was refreshed every 30 msec. The field of view was set to 56◦ with
a screen resolution of 640× 480 pixels.

During gameplay, subjects picked up and delivered twenty passengers. The session was
block-random, such that each of the four stores were delivered to before the next round
of deliveries began. Passenger placement was pseudo-random, with the constraint that a
passenger could not be in the direct line of sight of the previous goal.

Each delivery began with a foraging path, during which the subject located the next
passenger. When the passenger was picked up, a text screen notified the subject of the
next target store. The delivery path started with picking up the passenger and ended at
the goal (the passenger’s destination store). Each subject navigated twenty foraging paths
and twenty delivery paths during their session.

Subjects began with $300 of virtual cash. For each 10 sec spent moving or turning,
subjects were docked $1, with the restriction that a maximum of $1 could be docked for any
continuous period of standing still. Upon successfully completing a delivery, subjects were
rewarded $50 virtual cash. The current earnings were continuously displayed in the upper
right corner of the screen. The upper left corner of the screen contained a short description of
the current instructions (e.g., “Find a passenger” or “Find the Java Zone”). A screen
capture from a typical foraging path is shown in Figure 5.
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Figure 5. Experiment One: Screen capture taken during a typical foraging path. The autopac

store and several buildings are visible.

Procedure

Subjects were given a small delivery practice task in order to familiarize them with
gameplay. The practice environment measured 3×3 blocks, with a store in each of the four
corner blocks. There were no buildings in the practice environment. During the practice
session, subjects picked up four passengers and delivered them to each of the four stores.
Store textures used during the practice session were not re-used in the main task.

After the first practice task, images of stores the subject would encounter later in their
session were displayed on screen along with the store name. Subjects were asked to read
the store names aloud. The list of stores was presented four times, each time in a new
random order. The purpose of the second practice task was to familiarize subjects with the
appearance of stores before entering the town.

During the practice tasks, the experimenter remained in the testing room, and an-
swered any questions unrelated to strategy. After the practice tasks were complete, the
experimenter left the room, and subjects were assigned a 5× 5 town.

Measuring Performance

Excess path length is defined as the difference between the delivery path distance and
the ideal path distance. The ideal path distance is equal to the city block distance (∆x+∆y)
from the passenger to the goal store. Mean excess path length decreases as a function of
delivery number, as shown in Figure 6a.

Although excess path length provides a rough estimate of performance, it fails to take
into account the relative efficiency of paths of different lengths. Let us suppose that there
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Figure 6. Experiment One: (a) Mean excess path length. Subjects improve with the number of
deliveries made. Error bars represent ± 1 s.e.m. (b) Percent deviation from ideal path distance.
Subjects improve with the number of deliveries made. Error bars represent ± 1 s.e.m.
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are two deliveries, a and b, for which the excess path length is one block. For delivery a,
suppose that the ideal path distance is ten blocks. For delivery b, the ideal path distance
is only two blocks. Clearly, delivery a is more efficient than delivery b. However, according
to the excess path length measure, the performance for both deliveries is considered to be
equal.

Percent deviation of a delivery path is defined as the ratio of the delivery path distance
to the ideal path distance. For example, delivery a has a percent deviation of 11

10 = 1.1,
and delivery b has a percent deviation of 3

2 = 1.5. Thus, delivery a is considered to exhibit
better performance than delivery b. Percent deviation from the ideal path distance is shown
to decrease (improve) as a function of delivery number in Figure 6b.

Unfortunately, the percent deviation measure is not necessarily preferential to the excess
path length measure in all situations. The reason for this is due to an oversimplification
of the ideal path distance measure. Let us suppose a passenger and goal are placed as
shown in Figure 7. According to the ideal path distance measure, the passenger is three
blocks away from the goal. However, given that there are several buildings blocking a direct
path to the goal, the driver must “swerve” around the buildings before reaching the goal
store. The distance of the swerve is fixed, so the excess path length is constant (assuming
that the driver swerves consistently). Notice that the total path distance required to make
the delivery changes as a function of the number of buildings separating the passenger and
goal. In this way, percent deviation becomes a measure of environment constraints rather
than a true measure of performance. In the following table, I assume a one-block swerve is
necessary to circumvent any relevant obstacles:

Ideal path distance: 1 2 3 4 5

Path Efficiency: 2/1 = 2 3/2 = 1.5 4/3 = 1.33 5/4 = 1.25 6/5 = 1.2

Excess Path Length: 1 1 1 1 1

Despite their inconsistencies in specific cases, it should be noted that for Experiment
One data excess path length and percent deviation are correlated (correlation coefficient =
0.9593). This suggests that either metric should perform relatively well in the majority of
delivery paths.

Probability of getting lost is defined as the proportion of paths which are worse (accord-
ing to a pre-defined performance metric) than a threshold percentile. First, all observed
delivery paths are ranked by excess path length or by path efficiency. A threshold percentile
(e.g., 95%) is chosen; all deliveries ranked worse than the threshold percentile are tagged.
Therefore, the probability of getting lost is equal to the proportion of tagged paths in each
condition.

The probability of getting lost measure reveals trends in the data, rather than per-
formance for individual paths (Figure 8). When attempting to predict performance for
individual deliveries, a stochastic component of exploration begins to pervade, as will be
seen in the modeling section of this thesis. The probability of getting lost measure can be
useful as a means of containing the resulting noise.
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Figure 7. Swerving around a building. When the start position of the passenger is directly aligned
with the goal in either the horizontal or vertical direction (but is not directly adjacent to the goal)
the driver must swerve around one or more landmarks in order to make the delivery. In these cases,
the optimal path will have an excess path length equal to the city block distance from the passenger
to the nearest intersection.
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Figure 8. Experiment One: probability of getting lost. Error bars represent ±1 s.e.m.
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Efficient Navigation

Because passenger placement is random, it is impractical for subjects to memorize de-
livery path routes.8 Instead, the rapid learning observed in this task may be due to the
building of a cognitive map which stores layout information for known locations in the town.
As the cognitive map becomes more detailed, subjects are able to utilize remembered layout
information to synthesize efficient delivery paths from arbitrary passenger pickup locations
to known stores.

As shown in Figure 9, observed distributions of excess path length are highly skewed
toward zero. These findings provide motivation for the creation of an ideal navigator model
as a means of predicting excess path length (see Section Three). The ideal navigator, which
models performance of the perfect subject, will generate an optimal path (excess path length
= 0) unless either (a) the current goal has not yet been displayed on screen, or (b) environ-
ment constraints require swerving around obstacles in order to complete the delivery (as in
Figure 7). In this way, the ideal navigator provides a more realistic optimal performance
benchmark than ideal path distance, since the ideal navigator operates according to similar
movement constraints as the subject (see Robles-De-La-Torre & Sekuler, 2004).

Experiment Two

Subjects in Experiment One learned their environments quickly, making it difficult for
the researchers to learn about errors in spatial memory. As originally reported by Korolev
(2005), participants in Experiment Two were tested in a 41% larger environment than
in Experiment One. In addition, the paradigm underwent several feature upgrades and
cosmetic changes (see Figure 10) aimed at increasing perceived realism during gameplay.
Subjects were tested over the course of three sessions (each separated by at least one day),
during which they made deliveries to three towns in the following order:

A: A new town that had never been seen before
B: A second town that had never been seen before
A′: A third town which was identical to town A

For the purposes of this thesis, I am concerned only with each unique town navigated.
All A′ environments were ignored in my analysis and modeling (see Korolev (2005) for a
description of the A′ condition and its implications). Because my proposed model does not
take into account learning across conditions, it only makes sense to look at environments
which have not been seen before.

Subjects

Twenty-one9 Brandeis University and University of Pennsylvania students and staff (12
male, 9 female) participated for monetary compensation, with an additional bonus based
on performance.

8In larger environments, “route memorization” may be useful between known hubs, as suggested by
Voicu’s hierarchical cognitive map model (Voicu, 2003). However, for the simple, highly regular environments
used in this experiment, a hierarchical representation becomes redundant.

9Seven new subjects were tested after data from fourteen subjects were reported by Korolev (2005) and
Mollison (2005).
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Figure 9. Experiment One: excess path length distribution for delivery one (a) and two (b). The
distributions are skewed toward an excess path length of zero.
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Figure 10. Experiment Two: Screen capture taken during a typical foraging path. The Butcher

Shop store, a passenger, and several buildings are visible.

Construction of Virtual Towns

Virtual towns were constructed similarly to those in Experiment One. Experiment Two
towns were laid out on a 6× 6 block orthogonal grid of roads surrounded by an outer wall.
The dimensions of the town may be expressed as 19× 19 virtual units, where the width of
the street is one virtual unit, and where each block occupies 2 × 2 virtual units. Of the
361 square virtual units, 144 are occupied by landmarks, 31 of which are buildings and 5 of
which are stores. As in Experiment One, buildings occupied approximately 4 square units
at their base, but varied greatly in their height. Stores occupied a 0.7×0.7×0.35 rectangular
prism. At the start of each session, a small 3 × 3 practice environment (one store in each
corner) and two full size 6 × 6 environments were randomly generated such that no store
texture was repeated. Stores were placed pseudo-randomly with the constraints that (a) no
two adjacent blocks could each contain stores, (b) all four corners of the environment could
not each contain a store, (c) no row or column could contain all stores, and (d) neighboring
stores were required to have at least two buildings between them in both the horizontal and
vertical directions. These constraints meant to slow learning of the town layout relative to
Experiment One.

Navigation and Gameplay

Subjects controlled the virtual taxicab using a USB10 gamepad controller with a 360◦

directional pad. Driving speed was modulated by the pressure exerted on the pad, with a

10Universal Serial Bus
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maximum driving speed of 1 unit/sec. The turning rate was 50◦/sec. The field of view was
set to 60◦ with a screen resolution of 800 × 600 pixels, and was refreshed every 20 msec.

During gameplay, subjects picked up and delivered fifteen passengers per environment.
The goals chosen were block-randomized, such that each of the five stores were delivered to
before the next round of deliveries began. Passenger placement was pseudo-random, with
the constraints that no two passengers could occupy the same block, and that a passenger
could not be in the direct line of sight of the previous goal. Six potential passengers were
placed at the start of each delivery. When the passenger was picked up, a text screen
notified the subject of the next target store. The delivery path begins when the passenger
is picked up, and ends at the goal store.

For the first delivery in each new environment, a passenger was placed directly in front of
the subject. Each subsequent delivery began with a foraging path, during which the subject
located the next passenger. By starting subjects with a passenger, the first foraging path is
effectively eliminated. Performance during the first delivery becomes highly dependent on
the subject’s foraging strategy, since the subject has no prior exposure to the environment.
Nevertheless, for 18.25% of first deliveries in previously unseen environments, subjects still
manage to generate optimal paths (excess path length = 0). I attribute optimal performance
during the first delivery simply to luck.

Initially subjects began with 300 points. Upon successful delivery, subjects were re-
warded 50 points, but were docked 1 point for every three seconds of gameplay. The score
was continuously displayed in the upper right corner of the screen. The upper left corner of
the screen contained a short description of the current goal (e.g., “Find a passenger” or
“Find the Coffee Store”), as in Experiment One. A typical view seen during a subject’s
foraging path is shown in Figure 5.

Procedure

Subjects were given a small delivery practice task in order to familiarize them with
picking up and dropping off passengers. The practice environment measured 3 × 3 blocks,
with a store in each of the four corner blocks. There were no buildings in the practice
environment. During the practice session, subjects picked up four passengers and delivered
them to each of the four stores. Store textures used during the practice session were not
re-used in the main task.

After the first practice task, images of stores the subject would encounter later in their
session were displayed on screen along with the store name. Subjects were asked to read
the store names aloud. The list of stores was presented four times, each time in a new
random order. The purpose of the second practice task was to familiarize subjects with the
appearance of stores before entering the town.

After the practice tasks were complete, the subjects were assigned a 6×6 town. Subjects
picked up and delivered fifteen passengers (A condition). At the end of the fifteenth delivery,
subjects were allowed to take a short break, leaving the testing room if desired. After an
additional showing of the store familiarization task, subjects were given a second town (B
condition), followed by a break after fifteen deliveries. After a third showing of the store
familiarization task, subjects made fifteen deliveries in their last environment (A′ condition).
In subsequent sessions, the initial practice environment was omitted, but otherwise testing
procedure was identical.
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Figure 11. Experiment Two: First delivery excess path length as a function of (unique) environment
number. Error bars represent ±1 s.e.m.

During the testing session, the experimenter remained in the testing room, and answered
any questions unrelated to strategy.

Learning Across Environments

Subjects in Experiment Two make deliveries in six unique environments. Subjects ap-
peared to improve slightly as a function of the number of unique environments experienced
(see Figure 11), however this improvement was not statistically significant.11 In order to
increase the size of the data set for analysis and modeling purposes, I grouped data from
all environments together.

Results

Performance for Experiment Two was analyzed using excess path length, percent devi-
ation measure, and probability of getting lost (Figure 12). As in Experiment One, delivery
performance improves as subjects gain experience delivering passengers in the town.

Model

My attempt to model human spatial navigation led me to construct two computational
models. The first is an ideal navigator which generates an optimal delivery path when a
goal store has previously been seen. When the goal store has not been seen, the ideal navi-
gator forages efficiently to find the goal quickly. The second model, nicknamed Magellan,12

11I performed a right-tailed two-sample T-test comparing the first deliveries of environments one and six,
assuming equal variance (p = 0.1429).

12Ferdinand de Magellan was the first person to circumnavigate the globe (1519 - 1522). Professor Robert
Sekuler unofficially named the degraded ideal navigator after Magellan in an email correspondence with the
author dated 6/6/2004.
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Figure 12. Experiment Two: A variety of performance measures. Error bars represent ±1 s.e.m.
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systematically degrades the memory and vision of the ideal navigator in order to account
for subject error.

Defining An Optimal Path

When the excess path length is zero, we say that the delivery path is optimal. However,
in some cases when the excess path length is greater than zero, the delivery path may still
be optimal. One such situation is described in Section Two and illustrated in Figure 7.
When the start position of the passenger is directly aligned with the goal (in either the
horizontal or vertical direction), but is not directly adjacent to the goal, the driver must
swerve around one or more landmarks in order to make the delivery. In these cases, the
optimal path will have an excess path length equal to the twice the city block distance from
the passenger to the nearest intersection (once for a swerve in the beginning of the path
and once for a swerve at the end of the path).

Ideal Navigator Model

An ideal navigator (a) sees all landmarks displayed on screen and (b) remembers their
allocentric spatial location without noise or forgetting. The model (c) uses this information
to generate optimal delivery paths to goal stores which have been seen previously. For
goals which have not yet been seen, the ideal navigator (d) implements an efficient foraging
algorithm which quickly searches unknown sections of the town. As soon as the goal is
located, an optimal path is generated to it from the model’s current location.

I define one step of the model to be a move from one intersection in the town to an
adjacent intersection. Consequently, the model’s heading will always be a multiple of 90◦.
This simplification allows me to focus on path distance - rather than the exact shape of a
particular delivery path - as an indirect measure of spatial knowledge of the environment.
Constraining the model’s movement in this way means that the model can never out-perform
the ideal path.

As the model steps, we compute which landmarks are visible along that step in the
corresponding virtual environment. Each visible landmark is mapped onto the model’s
internal representation of the environment, which includes a spatial location and a unique
identifier for each landmark. Initially, the model’s internal representation is empty.

Simplifying the Delivery Path

During the experiments, the only constraint placed on subjects is that they must drive on
the road (not on the sidewalk or grass). Because the roads are relatively wide, subject paths
within the roadway may take complicated zig-zags and turns. An important implication
of this freedom of movement is that subjects can out-perform the ideal path as I define it.
While the ideal path length is computed using the city block distance (the sum of two legs
of a right triangle), the subject’s delivery path has the ability to cut corners at headings
other than 90◦. Thus, the true ideal subject path is actually somewhere between the city
block distance and the Euclidean distance from passenger to goal.

In order to make a fair performance comparison between subjects and the model, I must
guarantee that subjects can never perform better than the ideal path. Thus, from here on,
I use a simplified version of the subject’s path, computed as follows:
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1. An n×m environment is divided into a (3n + 1) × (3m + 1) grid13 of equal
total dimensions. This means that if the n ×m environment spans 256 virtual
square units, the (3n + 1)× (3m + 1) grid will span 256 virtual square units as
well.
2. The subject’s path is plotted on the (3n + 1)× (3m + 1) grid.
3. Each point along the subject’s path is rounded to the center of its block.
4. Rounded points are connected.

Because the town is laid out on an orthogonal grid, the heading along the simplified path
is always a multiple of 90◦. Figure 13 demonstrates the effects of path simplification on the
excess path length performance metric.

Ideal Navigator Concerns

Several difficulties arise when attempting to model a succession of deliveries in a given
environment. First, the foraging path distance varies from subject to subject, since pas-
senger placement is random. In addition, subjects may have different foraging strategies
which may change as the subject learns their environment. The specific strategy subjects
are using at a given point during their session is extremely difficult to infer from behavioral
data, especially given that individual deliveries may be noisy.

Even when the model predicts the correct observed delivery path distance, the particular
shape of the model’s path may differ from the subject’s simplified path. For a given delivery
requiring ∆x horizontal moves and ∆y vertical moves, the total number of unique paths
of equal length is (∆x+∆y)!

∆x!∆y! (see Appendix A for further explanation). If left uncorrected,
the model would have access to landmark information for landmarks which were never
actually displayed on the subject’s screen. As the model makes more deliveries, these errors
propagate, and the model’s session diverges from the subject’s session.

I overcame these difficulties by erasing the model’s memory when each new passenger is
picked up. The model’s memory is then replaced with all landmarks actually seen from the
start of the subject’s session until the moment at which the passenger is picked up. When
the model’s memory is guaranteed to contain only landmarks displayed on the subject’s
screen, we say that the model’s memory is synchronized with the subject’s memory.

Ideal Navigator Algorithm

From the time the passenger is picked up until the time the model arrives at the goal,
the model’s algorithm may be summarized by two instructions:

1. Find a sub-goal. The sub-goal is equal to the goal (the passenger’s intended
destination) if the location of the goal is known. Otherwise, set the next sub-
goal to be the nearest block not yet associated with a landmark. If there are
multiple sub-goals, choose randomly between them. This step implements the
ideal navigator’s efficient foraging strategy.
2. Take a step toward the sub-goal. If there are multiple possible directions
to step, choose randomly between them.

13Recall that each block is twice as wide as the road, so the total width of a road-block pair is three
road-widths.
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Figure 13. Excess path length vs. number of deliveries for Experiment One (a) and Experiment
Two (b). Subject performance (blue) is measured by comparing the average goal path distance to
the average ideal path distance, for each delivery made. To compute the simplified subject excess
path length (black), we first round all positions to the nearest intersection. In this way, the simplified
paths consist of straight lines and 90◦ turns. Note that while the actual excess path length can be
negative, the simplified excess path length is non-negative. Error bars represent ±1 s.e.m.
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Figure 14. Experiment One: observed excess path length (blocks) vs. predicted excess path length,
using the ideal navigator. Note that many data points overlap at (0, 0). In order to disambiguate
this overlap, a small amount of random noise is added to the plot in order to jitter data points.

Because a step always brings the model one block closer to the sub-goal, the modeled
path is by definition optimal. When the passenger’s destination has been encoded in the
model’s memory, the initial sub-goal is equal to the passenger’s destination, and so the
model generates an optimal delivery path. When the passenger’s destination is unknown,
we implement an efficient foraging strategy by setting the sub-goal to the center of the
nearest block on which no landmark has been previously seen. In this way, sub-goals are
chosen to be near each other, and so nearer locations will be explored before far locations. As
a result, the model will waste fewer steps traveling back and forth across the environment,
minimizing effort and time per delivery (Robles-De-La-Torre & Sekuler, 2004).

Although I claim that the ideal navigator’s strategy is ideal, it is possible for subjects to
“beat the ideal navigator.” This seems counter-intuitive, since the ideal navigator should
make optimal use of all information available to the subject. However, when there is a lack
of information about the goal, there is a stochastic component to the shape of the delivery
path. This means that there is some chance of navigating to the location of the goal without
actually ever having seen it. This “luck” component becomes significant in the first few
deliveries, when only a small portion of the environment has been explored (and so the
foraging stochastic component plays a large role in the foraging path). Once all landmarks
in the environment have been seen, the ideal navigator should either match or outperform
subjects14 in every delivery.

Figure 14 plots observed excess path length versus predicted excess path length for the
first four deliveries of Experiment One. Note that many data points overlap near the origin.
The corresponding plot for Experiment Two is shown in Figure 15.

As illustrated in Figure 16, the number of subjects outperforming the ideal navigator
drops to zero after the first delivery. This differs from Experiment One, in which subjects
are given an opportunity to explore before picking up their first passenger. In addition, the
larger town size in Experiment Two means that its layout will require more steps to fully

14Simplified subject path.
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Figure 15. Experiment Two: observed excess path length (blocks) vs. predicted excess path length,
using the ideal navigator. Note that many data points overlap at (0, 0). In order to disambiguate
this overlap, a small amount of random noise is added to the plot in order to jitter data points.

explore. Thus, in Experiment Two, the stochastic foraging component leaks into the second
delivery.

Ideal Navigator Results

Given the relatively small 5× 5 town (256 virtual square units) of Experiment One, the
ideal navigator predicts the observed excess path length an average of 66.6% of the time.
Experiment Two, with a 6 × 6 town (361 virtual square units), represents a 41% increase
in environment size. A corresponding drop in performance is observed, and so the ideal
navigator’s ability to predict subject performance is diminished, as shown in Figure 17. The
particular percentage of deliveries predicted by the ideal navigator is less important than
the drop in ability to fit the data in the larger town of the second experiment. The decreased
portion of subject delivery paths explained by the ideal navigator in Experiment Two are
suggestive of two ideas. First, the ideal navigator must be discounting one or more key
factors underlying delivery performance. Second, these factors must play a more significant
role in determining performance in Experiment Two, which implies their effectiveness is
related to environment size.

Predicting Environment Difficulty. Although the ideal navigator model uses a consistent
foraging strategy for each randomly generated environment, its ability to generate optimal
delivery paths varies. This suggests that some environments may be more difficult than
others. The ideal navigator’s delivery performance can be used as a metric for environment
difficultly as follows (this is done separately for each delivery):

1. Pair each subject’s observed excess path length with the model’s predicted
excess path length for that delivery.
2. Order all pairs based on the model’s predictions.
3. Divide the ordered data into n equally sized bins.
4. Define a threshold percentile, θ, beyond which subjects are considered to be
“lost” while making their delivery.
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(a) Experiment One
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(b) Experiment Two

Figure 16. Probability of beating the ideal navigator as a function of delivery number. (a) Dur-
ing the first delivery of Experiment One, some subjects may guess the direction of the goal with-
out having previously seen it. After the first delivery, the ideal navigator consistently matches or
out-performs all subjects. (b) After the second delivery of Experiment Two, the ideal navigator
consistently matches or out-performs all subjects. Recall that there is no foraging path for the first
delivery in Experiment Two.
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(b) Experiment Two

Figure 17. Ideal Navigator: Correct Predictions. Probability of having excess path length pre-
dicted by the ideal navigator as a function of delivery number. Error bars represent ±1 s.e.m. (a)
Experiment One: In delivery one, the model’s predictive power is low due to a stochastic foraging
component. The mean probability of predicting the correct excess path length is 66.6%. (b) Ex-
periment Two: In deliveries one and two, the model’s predictive power is low due to a stochastic
foraging component. The mean probability of predicting the correct excess path length is 42.8%.
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5. Set q equal to the excess path length observed for the subject in the θth

percentile.
6. For each of the n bins, compute the fraction of subjects with an excess path
length greater than or equal to q.

For the first delivery of Experiment One, and the first two deliveries of Experiment Two,
this metric performs poorly. As noise due to stochastic foraging decreases in later deliveries,
the ideal navigator is able to successfully rank environments as easy, medium, or difficult
(Figure 18.)

Ideal Navigator Shortcomings

The ideal navigator accounts for errors due to lack of information, but does not account
for human errors due to inattention (failure to encode a landmark displayed on screen) or
forgetting over time (failure to recall a previously encoded landmark). In Experiment One,
the ideal navigator model does a fairly good job of explaining observed performance (Figure
17a). However, as the size (and therefore complexity) of the environment is increased in
Experiment Two, the ideal navigator fails to account for over half of the delivery paths
made (Figure 17b).

Because the distributions of excess path length in both experiments are highly skewed
toward zero, the performance of many subjects will be explained by a model which generates
optimal paths. However, the ideal navigator does a poor job of fitting average performance,
as shown in Figure 19.

In the Magellan model, I attempt to account for mean performance by degrading the
ideal navigator’s memory and visual attention, as described in the next section.

Magellan

The Magellan model adds three new parameters to the ideal navigator:

1. A forgetting parameter, f
2. A recall threshold parameter, r
3. A visual threshold parameter, v

The ideal navigator is a special case of the Magellan model where all parameters are set to
0. Pseudocode for the Magellan model can be found in Appendix B.

Memory

In the ideal navigator model, when a landmark is displayed on the subject’s screen, it is
added to the model’s internal representation of the environment as a permanent memory.
Magellan’s f and r parameters allow the memory of a given landmark to decay exponentially
over time (0 6 f, r 6 1). When a memory µ is added to Magellan’s memory, we give it
a weight of 1. Each time the model takes a step (dt = 1), µ is updated according to the
function:

µ(t + 1) = µ(t)× (1− f).

While µ > r, the model is able to recall µ. All memories are stored in a memory matrix
M , such that the value stored at M(x, y) corresponds to the strength of the memory for
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Figure 18. Ideal Navigator: Estimated Environment Difficulty. Subject deliveries are sorted based
on ideal navigator-predicted percent deviation from the ideal path distance. A box plot summarizes
the range of percent deviations represented by each bin (a) Experiment One, delivery two. (b)
Experiment Two, delivery three.
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Figure 19. Ideal Navigator Predictions for Experiment One (a) and Two (b). Error bars represent
±1 s.e.m.
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the landmark stored at block (x, y) in the virtual environment. In this way, the f and r
parameters are intended to account for forgetting as a function of time.

Behavioral Manifestations of Memory Parameter Values. When either r or f is set to 1,
Magellan is rendered “memoryless.” In such a situation, the model sits at a fixed position
for the duration of the session. Effectively, Magellan enters an infinite loop, in which it
seeks a new unremembered landmark with each iteration. Since none of the landmarks in
the environment are remembered, the model selects randomly from adjacent landmarks.
As soon as the model turns toward its landmark of choice it forgets what it has done and
selects a new landmark to turn toward.

As r and f are lowered slightly from 1, the model’s path takes on Brownian motion-
like qualities. Because Magellan no longer forgets its immediate surroundings, it is able to
wander off its current intersection. However, after a few steps, the Model is likely to forget
where it had just been. Since nearby “unremembered” landmarks are investigated before
far away landmarks, the model tends to stay in one section of the environment.

When either r or f is set to zero, the model becomes eidetic. Any landmark seen at least
once is remembered forever, and so the environment is learned quickly, and deliveries become
optimal after a short time. By adjusting r and f to values between 0 and 1, a wide range
of behaviors ranging from perfect learning, to Brownian-like motion, to unmoving stupor
may be observed. In this way, although Magellan’s foraging strategy is fixed, the model’s
cognitive map (as modulated by memory parameters) directly influences the efficiency and
shape of delivery paths.

Vision

The ideal navigator model assumes perfect vision for all landmarks displayed on screen.
This means, in theory, that even if only one pixel of a particular landmark were to appear
for a fleeting instant, the ideal navigator would have full access to memory of that landmark.
Intuitively, this appears to violate the idea of an absolute threshold (see Sekuler & Blake,
2002).

Magellan’s visual threshold parameter, v, defines a threshold fraction of the screen which
a landmark must occupy in order to be perceived by the model. The v parameter is intended
to account for (1) failures to perceive a landmark displayed on screen due to insufficient
number of pixels present (i.e. an absolute threshold) and also (2) failures to perceive a
landmark due to inattention.

Conflicts Caused by the Visual Threshold Parameter. When v is set sufficiently large,
Magellan may lose its ability to see stores (which are small) while maintaining the ability
to see buildings. In such a scenario, Magellan could hypothetically drive directly up to a
store15 but be unable to see it. If this happens, Magellan becomes stuck at an intersection
adjacent to the store, since the nearest landmark which has not yet been seen (which
Magellan continuously tries to locate) is effectively invisible.

To prevent such a situation from occurring, I added an additional rule to the Magellan
model, which stated that a landmark should be added to the cognitive map if (a) Magellan

15Magellan is always located at an intersection, so “driving directly up” to a store simply entails navi-
gating to an adjacent intersection. An unintentional (although not necessarily negative) consequence of this
property is that the model is unable to drive so close to a landmark that it takes up the entire field of view.
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had actively turned toward the goal and been unable to see it, and (b) Magellan was as
close to the goal as possible (i.e. at an adjacent intersection).. The process of adding a
landmark to Magellan’s cognitive map without it actually being seen is called marking.

Behavioral Manifestations of Visual Threshold Parameter Values. When v is set to 1,
Magellan is rendered blind. In such a situation, the model’s behavior is strongly influenced
by the pre-defined foraging strategy (continually go to the nearest block at which a land-
mark has not been seen), in combination with a stochastic process for choosing between
equidistant unremembered landmarks. Magellan tends toward nearby unexplored blocks,
working outward in an approximately spiral path.

Large values of v which are close to 1 lead to blind-like behaviors, although as v is
decreased, learning rates improve and navigation becomes more efficient. When v = 0, any
landmarks displayed on screen are added to memory, and so the model learns the town
rapidly.

Results and Discussion

Parameter Effects on Mean Learning Curve

Although the model’s ability to fit the empirical data is sensitive to each of the three
parameters, the parameters interact in complex ways which can change or enhance their
sensitivity. In general, when there are few strong memories, the r parameter becomes
sensitive to small changes. The variance of memory strength tends to be high when f is
large, since memory strengths become highly dependent on the time since the corresponding
landmark was last seen. However, when many strong memories are available, r becomes
almost irrelevant, since landmarks will likely be seen again (and their memory strength
reset) before the memories decay below threshold. In the same way, r is most influential
during later deliveries, when it becomes likely that all landmarks have been seen at least
once, but not necessarily in the last few steps (and so the memory is more likely to decay
below threshold).

When v is large, the likelihood that a given landmark will be seen at a given time is
low. This means that, once a landmark is seen, it is less likely to be seen again than if v
were small. Accordingly, the time between landmark sightings is increased, and so memory
strengths are reset less often. In this way, f and r become more sensitive as v is increased.

Figure 20 explores the mean learning curve’s sensitivity to r, f , v are varied over a small
range.

Parameter Optimization

I use root mean squared distance (RMSD) between the mean observed learning curve and
the mean predicted learning curve as a goodness of fit measure. I performed a grid search
of a large parameter space over r, f , and v in order to uncover the optimal combination of
parameters which would account for mean performance in each experiment. Figures 21 and
22 summarize the results of these searches.

The best-fitting set of parameters for Experiment One (RMSD = 0.2337) were (r, f, v) =
(0.05, 0.08, 0.30). For Experiment Two, the best-fitting set of parameters (RMSD = 0.6538)
were (r, f, v) = (0.2, 0.048, 0.08), as shown in Figure 23.
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Figure 20. Experiment Two: Sensitivity of Mean Learning Curve to Magellan parameters. Error
bars represent ±1 s.e.m. (a) r Sensitivity Analysis. From left to right, f is increased. From top to
bottom, v is increased. A range of r values are shown in each sub-plot, along with subject learning
curves for comparison. (b) f Parameter Sensitivity Analysis. From left to right, r is increased.
From top to bottom, v is increased. A range of f values are shown in each sub-plot, along with
subject learning curves for comparison. (c) v Parameter Sensitivity Analysis. From left to right, f
is increased. From top to bottom, r is increased. A range of v values are shown in each sub-plot,
along with subject learning curves for comparison.
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Figure 21. Experiment One: RMSD between mean predicted and mean observed excess path
length. (a) r vs. f (b) v vs. f (c) r vs. v
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Figure 22. Experiment Two: RMSD between mean predicted and mean observed excess path
length. (a) r vs. f (b) v vs. f (c) r vs. v
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Figure 23. Best-fitting set of parameters. Error bars represent ±1 s.e.m. (a) RMSD = 0.2337. (b)
RMSD = 0.6538
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Conclusions

In this thesis I showed that a degraded Ideal Navigator model could be used to account
for mean learning curves in two similar virtual reality tasks. To a limited extent, this model
also accounts for differences between subjects by estimating environment difficulty as easy,
medium, or hard.
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Appendix A

Number of Paths Between Two Intersections

The Problem

Our environment is a city laid out on an orthogonal grid, and we would like to drive
our taxicab from the current position (a passenger) to a store in the environment. We can
consider each move to be a one-block step in the horizontal direction (West or East) or the
vertical direction (North or South), bringing us to an adjacent intersection. If the store is
∆x blocks away horizontally and ∆y blocks away vertically, how many unique paths exist
from the passenger to our destination?

Re-stating the Problem

We can represent horizontal moves as 1’s and vertical moves as 0’s. The number of
paths is the number of unique permutations of ∆x 1’s and ∆y 0’s.

Solution

The number of permutations of a list of unique elements with length n is n!. However,
because ∆x of the elements in this case are 1’s, we need to divide by ∆x!. Likewise, we
must account for the number of (non-unique) 0’s by dividing by ∆y!. In general, for ∆y
horizontal moves and ∆y vertical moves, the number of unique paths, u is given by:

u =
(∆x + ∆y)!

∆x!∆y!



MODELING HUMAN SPATIAL NAVIGATION 39

Appendix B

Pseudocode

function MAGELLAN(r,f,v):

memory := {empty}

FOR each delivery d DO:

sf := {subject foraging path}

fsteps := {divide sf into block-sized steps}

FOR each step s IN fsteps DO:

FOR each building seen at (x,y) during s (according to v) DO:

memory(x,y) := 1

END

memory := memory * (1-f)

END

temp := memory

POSITION := GET-POSITION({passenger d})

while {not arrived at goal with position (x,y)} DO:

IF {temp(x,y) > r} THEN sub-goal := (x,y)

else:

sub-goal = {find nearest block(s) IN temp for which temp(a,b) <= r}

IF {more than one sub-goal} THEN sub-goal := SELECT-RANDOMLY(sub-goal)

temp := temp * (1-f)

new-position := TAKE-A-STEP(POSITION, sub-goal)

FOR each building seen at (x,y) during the step (according to v) DO:

temp(x,y) := 1

END

END

sd := {subject delivery path}

dsteps = {divide sd into block-sized steps}

FOR each step s IN dsteps DO:

FOR each building seen at (x,y) during s (according to v) DO:

memory(x,y) := 1

END

memory := memory * (1-f)

END

END


