
Computational Neuroscience Summer
Program: Introductory Course

May 31 – June 3, 2011

Instructors: Dr. Joshua Jacobs (joshua.jacobs@drexel.edu)

Dr. Jeremy Manning (manning3@mail.med.upenn.edu)

Suggested texts: Theoretical Neuroscience, Dayan and Abbott

Principles of Neural Science, Kandel, Schwartz, and Jessell

Matlab for Neuroscientists, Wallisch et al.

Course overview: This intensive introductory course is intended to familiarize students with
basic techniques in computational modeling and analysis of neural data using Matlab. Students
may (and are encouraged to) work together on assignments, but each student will be expected
to hand in their own work. Assignments will be reviewed, but no formal grades will be assigned.

Course Outline:

Orientation and ethics training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 31 (AM)
Introduction to programming in Matlab . . . . . . . . . . . . . . . . . . . . . . May 31 (PM)
Introduction to computational modeling . . . . . . . . . . . . . . . . . . . . . . . June 1 (AM)
Integrate-and-fire neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . June 1 (PM)
Hodgkin-Huxley neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . June 2 (AM)
Extensions of the Hodgkin-Huxley model . . . . . . . . . . . . . . . . . . . . . . June 2 (PM)
Neural data processing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . June 3 (AM)
Open lab time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .June 3 (PM)

Note: The above course outline is approximate and is subject to change pending students’
needs and interests. Because of the brief duration of this course, we are only able to provide a
small “taste” of the diverse and evolving field of computational neuroscience. Students seeking
more in-depth coverage of computational neuroscience, including the topics discussed in this
course, are encouraged to read the suggested texts.



MATLAB Cheat Sheet

Basic Commands

% Indicates rest of line is commented out.
; If used at end of command it suppresses output.

If used within matrix definitions it indicates the end of a row.
save filename Saves all variables currently in workspace to file filename.mat.
save filename x y z Saves x, y, and z to file filename.mat.
save -append filename x Appends file filename.mat by adding x.
load filename Loads variables from file filename.mat to workspace.
! Indicates that following command is meant for the operating system.
... Indicates that command continues on next line.
help function/command Displays information about the function/command.
clear Deletes all variables from current workspace.
clear all Basically same as clear.
clear x y Deletes x and y from current workspace.
home Moves cursor to top of command window.
clc Homes cursor and clears command window.
close Closes current figure window.
close all Closes all open figure windows.
close(H) Closes figure with handle H.
global x y Defines x and y as having global scope.
keyboard When placed in an M-file, stops execution of the file and gives

control to the user’s keyboard. Type return to return control
to the M-file or dbquit to terminate program.

A=xlsread(‘data’,... Sets A to be a 5-by-2 matrix of the data contained in
‘sheet1’,‘a3:b7’) cells A3 through B7 of sheet sheet1 of excel file data.xls
Succes=xlswrite(... Writes contents of A to sheet sheet1 of excel file
‘results’,A,‘sheet1’,‘c7’) results.xls starting at cell C7. If successful success= 1.

path Display the current search path for .m files
addpath c:\my_functions Adds directory c:\my_functions to top of current search path.
rmpath c:\my_functions Removes directory c:\my_functions from current search path.
disp(’random statement’) Prints random statement in the command window.
disp(x) Prints only the value of x on command window.
disp([’x=’,num2str(x,5)]) Displays x= and first 5 digits of x on command window. Only works

when x is scalar or row vector.
fprintf(...

Displays The 3 is 1.73. on command window.
’The %g is %4.2f.\n’, x,sqrt(x))

format short Displays numeric values in floating point format with 4 digits after
the decimal point.

format long Displays numeric values in floating point format with 15 digits after
the decimal point.

Plotting Commands

figure(H) Makes H the current figure. If H does not exist is creates H.
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Note that H must be a positive integer.
plot(x,y) Cartesian plot of x versus y.
plot(y) Plots columns of y versus their index.
plot(x,y,‘s’) Plots x versus y according to rules outlined by s.
semilogx(x,y) Plots log(x) versus y.
semilogy(x,y) Plots x versus log(y).
loglog(x,y) Plots log(x) versus log(y).
grid Adds grid to current figure.
title(‘text’) Adds title text to current figure.
xlabel(‘text’) Adds x-axis label text to current figure.
ylabel(‘text’) Adds y-axis label text to current figure.
hold on Holds current figure as is so subsequent plotting commands add

to existing graph.
hold off Restores hold to default where plots are overwritten by new plots.

Creating Matrices/Special Matrices

A=[1 2;3 4] Defines A as a 2-by-2 matrix where the first row contains the
numbers 1, 2 and the second row contains the number 3, 4.

B=[1:1:10] Defines B as a vector of length 10 that contains the numbers
1 through 10.

A=zeros(n) Defines A as an n-by-n matrix of zeros.
A=zeros(m,n) Defines A as an m-by-n matrix of zeros.
A=ones(n) Defines A as an n-by-n matrix of ones.
A=ones(n,m) Defines A as an m-by-n matrix of ones.
A=eye(n) Defines A as an n-by-n identity matrix.
A=repmat(x,m,n) Defines A as an m-by-n matrix in which each element is x.

linspace(x1, x2, n) Generates n points between x1 and x2.
Matrix Operations

A*B Matrix multiplication. Number of columns of A must equal number
of rows of B.

Aˆn A must be a square matrix. If n is an integer and n > 1 than Aˆn is
A multiplied with itself n times. Otherwise, Aˆn is the solution to
Anvi = livi where li is an eigenvalue of A and vi is the corresponding
eigenvector.

A/B This is equivalent to A*inv(B) but computed more efficiently.
A\B This is equivalent to inv(A)*B but computed more efficiently.
A.*B,A./B, Element-by-element operations.
A.\B,A.ˆn

A’ Returns the transpose of A.
inv(A) Returns the inverse of A.
length(A) Returns the larger of the number of rows and columns of A.
size(A) Returns of vector that contains the dimensions of A.
size(A,1) Returns the number of rows in A.
reshape(A,m,n) Reshapes A into an m-by-n matrix.
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kron(A,B) Computes the Kronecker tensor product of A with B.
A = [A X] Concatenates the m-by-n matrix A by adding the m-by-k matrix X as

additional columns.
A = [A; Y] Concatenates the m-by-n matrix A by adding the k-by-n vector Y as

additional rows.

Data Analysis Commands

rand(m,n) Generates an m-by-n matrix of uniformly distributed random numbers.
randn(m,n) Generates an m-by-n matrix of normally distributed random numbers.
max(x) If x is a vector it returns the largest element of x.

If x is a matrix it returns a row vector of the largest element in each
column of x.

min(x) Same as max but returns the smallest element of x.
mean(x) If x is a vector it returns the mean of the elements of x.

If x is a matrix it returns a row vector of the means for each column of x.
sum(x) If x is a vector it returns the sum of the elements of x.

If x is a matrix it returns a row vector of the sums for each column of x.
prod(x) Same as sum but returns the product of the elements of x.
std(x) If x is a vector it returns the standard deviation of the elements of x.

If x is a matrix it returns a row vector of the standard deviations for each
column of x.

var(x) Same as std but returns the variance of the elements of x.

Conditionals and Loops

for i=1:10

procedure Iterates over procedure incrementing i from 1 to 10 by 1.
end

while(criteria)

procedure Iterates over procedure as long as criteria is true.
end

if(criteria 1)

If criteria 1 is true do procedure

1, else if criteria 2 is true do
procedure 2, else do procedure 3.

procedure 1

elseif(criteria 2)

procedure 2

else

procedure 3

end
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Problem Set 1 -- Introduction to programming in Matlab

Computational Neuroscience Summer Program

May, 2011

Log into the computer with your PennKey and start Matlab.  Please put your answers to 
this assignment in a single Microsoft Word document.  This document should include 
your raw Matlab code, the commands you type to run the code, and its output text and 
plots.  

Some of these questions require functions that you may not have seen before.  If you 
have questions, please ask the instructors and feel free to consult Matlabʼs great built-in 
help functions and online tutorials at mathworks.com.

1.! Concatenation
Write a script that creates the variables a = [1 2 3], b = 4, c = 5, d = [6; 9], e = [7 8].  Use 
only these variables to create the matrix m = [1 2 3; 4 5 6; 7 8 9] in a single line of code 
through horizontal & vertical concatenation.  (Hint: use nested [ ] operations.) Now 
change the script into a function.  What is the effective difference between calling the 
script and the function?

2.! Number Classification
Write a function that will indicate whether an input number is negative, positive, or zero, 
as well as even or odd. The function should print these results to the command window 
and not return anything.

3.! For loop
Write a function that creates a Fibonacci sequence (a series of numbers where each 
element is the sum of the previous two elements; youʼll have to start it with [1 1]).  It 
should have an input parameter that indicates the desired length of the output 
sequence.

4. Plotting
Download this file and load it into matlab: 
# http://memory.psych.upenn.edu/~josh/Q4.mat
Plot the variable ʻZʼ from this file using the standard plot command.

Next, create a function plot_labeled_peak that accepts one input vector.  It should plot 
the vector in black.  In addition, the largest data point in this vector should be labeled 
with a red circle, and the smallest data point should be labeled with a blue ʻxʼ.  Show the 
result of this function when plotting ʻZʼ.



5. Challenge questions: Performance analysis
A.
Here we are interested in calculating the lengths of many three-element vectors 
according to the pythagorean theorem (i.e., sqrt(a2 + b2 + c2)).  Write a function that 
takes a three-column matrix, and returns the length of the vector in each row using a 
loop.  Use randn to create random three-column matrices with 10, 100, 1000, & 10000 
rows, and measure how long it takes your function to compute each one.  Next, create a 
similar function that does the same calculations in a vectorized fashion.  Compare the 
performance of the two by plotting the execution times of each of the two functions 
versus the number of rows in the matrix.

B.
In Matlab, preallocating a vector in a single command (by using the ʻzerosʼ or ʻonesʼ 
functions, for example) can make things operate much more quickly than repeatedly 
appending individual elements to the end of a matrix.  Write a version of the Fibonacci 
function from Question 3 that preallocates the output.  How fast does it calculate a 
20,000 element Fibonacci sequence? How does this speed compare to the previous 
version of this function?  Plot the Fibonacci execution times of various sequence 
lengths, for both versions of this procedure.

C.
A common data analysis tool is to normalize a dataset so that it has a mean of zero and 
a standard deviation of 1.  Here is a function that takes in a large matrix and returns a 
normalized dataset where each row has a mean of zero and a standard deviation of 1:

function x=normData_loop(x)
for row=1:size(x,1)
    m=mean(x(row,:));
    s=std(x(row,:));
    x(row,:)=(x(row,:)-m)/s;
end

Can you write a vectorized version of this function?  (Hint: use repmat.)  How does the 
execution time of your function compare with normData_loop on a 1000 by 1000 
matrix (e.g., rand(1000,1000))?



Lecture 2 – Introduction to computational modeling

Computational Neuroscience Summer Program

June, 2011

Motivation. This lecture is intended to give students a general intuition for basic mathematical lan-
guage used to describe and model neurons. These principles will serve as the foundation for future
lectures.

Basic organization of the brain. The brain is typically divided into 4 lobes. The temporal lobe contains
neural machinery for processing speech and sounds, spatial information, and for encoding episodic
(autobiographical) memories. The parietal lobe is involved with sensory perception, sensory integration,
and memory. The frontal lobe is associated with personality, reasoning, planning, problem solving, work-
ing memory, and movement. The occipital lobe is primiarily involved with vision and visual processing.
The central sulcus separates the primary motor cortex (frontal lobe) from the primary somatosensory
cortex (parietal lobe). The medial longitudinal fissure’ separates the right and left hemispheres of the
brain. The spinal cord sends signals from the primary motor cortex to the body’s skeletal muscles.

Neuron anatomy. Neurons are electrically excitable cells in the brain. Neurons “listen” to other cells
via branch-like dendrites. Signals from the dendrites travel down to the cell body, or soma, which contains
the nucleus of the cell. Neurons communicate with other cells by sending electrical impulses down
their axons, which most often synapse onto the dendrites of other neurons.

Action potentials. Neurons communicate with each other by changes in their membrane voltage
(we’ll get to what this means in a bit). Small changes in membrane voltage are picked up by neurons
up to approximately 1 mm away. Thus, for nervous systems on the scale of 1 mm, such as the fruit
fly nervous system, no other special mode of communication is needed. However, in larger nervous
systems (e.g. ours), neurons fire action potentials – sudden changes in voltage. These form the basic
mode of neural communication in the brain. Over the next few lectures we’ll be trying to understand
how action potentials come about by modeling neurons in increasing levels of detail.

The neuron as a fluid-filled ball. Each µm3 of cytoplasm contains on the order of 1010 water molecules,
108 ions (e.g. sodium, potassium, calcium, chloride), 107 small molecules (e.g. amino acids, nucleic
acids), and 105 proteins. Relative to the extracellular space, the inside of the cell is negatively charged
(the difference is carried by about 1 out of every 100,000 ions). This results in a voltage (V) across the
membrane of approximately -70 mV.
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The neuron as a capacitor. Excess negative charges in the cell oppose each other and line up around
inside of membrane. This attracts an equal number of extracellular positive ions, which line up outside
the cell. In this way, the membrane builds up charge – it’s acting as a capacitor! The amount of charge
(Q) stored by the membrane is given by the following equation:

CmV = Q

English description: the amount of charge stored by the membrane is equal to the ability of the membrane
to store charge (i.e., its capacitance) multiplied by the voltage difference across the membrane. The total
membrane capacitance (Cm) is proportional to the surface area of the cell (A):

Cm = cmA

Specific capacitance (cm) depends on conductance and thickness of membrane, which is about the
same for all neurons – about 10 nF/mm2. Neurons typically have a surface area of 0.01 – 0.1 mm2, so Cm

ranges from around 0.1 – 1 nF. We can now compute the number of charges stored by a given neuron
(we’ll assume 1 nF total capacitance and -70 mV membrane potential):

1nF × −70mV = 10−9F × 70 × 10−3V = 70 × 10−12C = 109charges.

Note: A Columb is 1 Farrad × volt.

Changes in current. Membrane current is a measure of the number of charges per second that travel
across the membrane. Current is measured in amps – 1 amp is 1 Columb per second:

I =
dQ
dt

In order to compute the membrane current, we can take the time derivative of the equation for
determining how much charge the membrane stores:

Cm
dV
dt

=
dQ
dt

= I

Example: suppose Cm = 1 nF. Then injecting I = 1 nA of current causes the membrane voltage to
rise by 1 volt per second (i.e., 1 mV per millisecond).

Membrane current. There are two components of current (I). The first is membrane current. The
membrane contains ion channels – these let specific neurons through. They can open and close.

One type of channel is the sodium channel. The inside of the cell contains fewer sodium ions than
outside the cell. When the sodium channels open, sodium (positively charged) flows into the cell and
causes the membrane voltage to increase. Diffusion of sodium and other ions (e.g. potassium) is called
the membrane current, Im.

Driving force and the equilibrium potential. In addition to sodium being driven to flow down its
concentration gradient, one can make it more or less difficult for sodium to enter the cell by changing the
membrane voltage. Because sodium is positively charged, decreasing, or hyperpolarizing, the membrane
voltage (inside relative to outside) will make sodium ions more likely to flow into the cell. Conversly,
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increasing, or depolarizing, the membrane voltage will make sodium ions less likely to flow into the cell.
The membrane potential at which net flow of an ion stops is called the equilibrium potential, E. When
V > E, positive ions flow out of the cell. When V < E, positive ions flow into the cell. This means that
V is driven towards E. Thus, we sometimes refer to the quantity (V − E) as the driving force across the
cell membrane. When the driving force is negative, positive ions are driven out of the cell. When the
driving force is positive, positive ions are pulled into the cell.

External current. The second component of current is current that is injected into the neuron from
external sources (e.g. if we stick an electrode into the neuron and pump in current).

The change in membrane voltage V due to some change in current I follows Ohm’s Law:

V = IR,

where R is the membrane resistance, described next.

Membrane resistance. Ion channels are like little holes in the membrane. They let ions pass through
them – i.e., they conduct ions. A given unit area of membrane has some number of open channels, and
we can measure the ease with which ions pass through those channels – the specific conductance, gm.
The total conducatance is proportional to the neuron’s area:

Gm = gmA

By convention, we tend to talk about the inverse of conductance, which is called resistance. Whereas
conductance is proportional to the surface area of the neuron, resistance is proportional to the inverse
of the surface area of the neuron:

Rm =
rm

A
Note that the membrane resistance often changes as a function of voltage, which makes things interesting
– we’ll get to this later.

The Neuron Equation. Previously we had:

Cm
dV
dt

= I,

which we can update to reflect that I is comprised of both membrane and external currents:

Cm
dV
dt

= Ie + Im.

Im depends on the driving force V−E and also difficulty with which ions flow through the membrane
– i.e., the membrane resistance, Rm. In particular

Im =
1

Rm
(E − V)

Note that the order of the E and V terms in the driving force have been swapped. This is because
the internal and external currents need to go in opposite directions. We can multiply both sides of the
equation by Rm for convenience:

CmRm
dV
dt

= RmIe + E − V
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Since Cm = cmA and Rm = rm
A , the A’s cancel, and we get cmrm, which is independent of the cell’s

surface area. Since cmrm determines the rate at which the cell’s membrane potential changes, it is given
a special variable, τm, or the membrane time constant. The equation for all neuron models we’ll see in
this mini-course is:

τm
dV
dt

= RmIe + E − V

V∞. From the above equation, we see that the change in membrane voltage is some fraction (propor-
tional to τm) of the difference between RmIe + E and the current membrane voltage, V. By this equation
the membrane voltage approaches RmIe + E over time. For convenience we can define

V∞ = E + RmIe,

where V∞ is the membrane voltage that will be reached given an external current and membrane
resistance, and an infinite amount of time.

Resting potential. If you shut off the external current (i.e., set Ie = 0), then V∞ = E. For this reason, we
call E the resting potential of the cell – the potential the cell approaches if we remove external forces.

Computing the voltage at a particular time, t. We need to solve the following differential equation
for V:

τm
dV
dt

= RmIe + E − V

We know that, given enough time, V tends towards V∞, so we can say that at time t:

V(t) = V∞ + f (t)

Now we need to find f (t) (we’ll abbreviate f (t) as f for convenience). We use the equation above,
substituting in V∞ + f for V:

τm
d f
dt

= RmIe + E − V∞ − f

Since V∞ = RmIe + E, those terms cancel and we have:

τm
d f
dt

= − f

so
τmd f = − f dt

τm
d f
f

= −dt

Now that we have the f ’s and t’s on different sides of the equation, we can take the integral from 0
to t of both sides: ∫ f (t)

f (0)
τm

d f
f

=

∫ t

0
−dt

Solve the right hand side yields: ∫ f (t)

f (0)
τm

d f
f

= −t
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We can solve the left hand side using the rule
∫

1
xdx = ln(x):

τm[ln( f (t)) − ln( f (0))] = −t

τmln
f (t)
f (0)

= −t

Now we can solve for f (t):

ln
f (t)
f (0)

=
−t
τm

f (t)
f (0)

= e
−t
τm

f (t) = f (0)e
−t
τm

Previously, we said that the voltage changes as a function of the distance between the voltage at the
present time and V∞. So f (0) = V(0) − V∞, and f (t) = f (0)e

−t
τm .

Plugging f (t) back into the original equation gives:

V(t) = V∞ + f (t) = V∞ + (V(0) − V∞)e
−t
τm

This gives us a way to compute how long it will take to charge up the neuron to an arbitrary voltage
V(t), by solving for t.

Sanity checks. For t = 0, e
−t
τm = 1, so we get:

V(0) = V∞ + V(0) − V∞ = V(0)

When t is very large, e
−t
τm approaches 0, so V(t) approaches V∞.
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Problem Set 2 – Introduction to computational modeling

Computational Neuroscience Summer Program

June, 2011

In this problem set you will be exploring the relation between several fundamental neuronal properties. For all
problems, you should assume a specific membrane capacitance of cm = 10 nF/mm2, a specific membrane resistance
of rm = 1 MΩ·mm2, and a resting membrane potential of E = −70 mV. You should perform all calculations for
a variety of cell surface areas (use realistic values – between 0.01 and 0.1 mm2). Write up your results in a text
editor of your choosing. Include any relevant figures. Each question can be answered in 1-2 sentences. Include a
printout of your Matlab code as well as any calculations that aren’t in the code. You may work individually or in
groups, but each student should hand in their own report.

Equations

Cm = A · cm Rm = rm
A

τm = cm · rm V∞ = E + RmIext

V(t) = V∞ + (V(0) − V∞)e
−t
τm

Problems

1. Plot (seperately) total membrane capacitance (Cm) and total membrane resistance (Rm) as a function of cell
surface area (A). Your graph should include appropriate units. Briefly describe the relation between Cm, Rm, and
A.

2. Compute the membrane time constant τm. What does τm mean in terms of the neuron?

3. How much external electrode current would be required to hold the neuron at the membrane potentials
below?

V∞ ∈ {−80,−75,−70,−65,−60,−55,−50}mV

For each cell surface area (see above) plot the Iext required to hold the neuron at each of the membrane potentials
listed. Use a different color for each surface area, and include a legend in your plot. In your own words, describe
the relation between cell surface area and Iext.

4. Challenge problem. Assume an external current of Iext = 8 nA. How much time would it take to reach the
membrane potentials below?

Vm ∈ {−70,−65,−60,−55,−50}mV

Repeat your calculations for several cell surface areas (see above). In your own words, describe the relation
between cell surface area and time to reach target voltage.
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Lecture 3 – Integrate-and-fire neuron model

Computational Neuroscience Summer Program

June, 2011

Motivation. This lecture builds on the simple model neuron that we developed in the last lacture by
adding in action potentials (APs). Rather than modeling the biophysical basis of the AP, in this model
we manually cause the neuron to spike when its membrane voltage reaches a threshold value.

Recap. Our working model is that neurons are like capacitors connected to resistors – the cell mem-
brane stores charge, which can leak out through ion channels. As developed in the last lecture, the
equation we’ll be using for all model neurons is:

τm
dV
dt
= E − V + RmIe

Also from the previous lecture, we can solve for V(t) as follows:

V(t) = V∞ + (V(0) − V∞)e
−t
τm

Running a simulation – the “integrate” part of the model. Running a simulation entails computing
changes in the cell’s membrane voltage for each iteration of the simulation (dt ms). We can use the same
equation as above, but replace V(t) with V(t+dt) (i.e. the voltage in the next time step of the simulation)
and V(0) (the starting voltage) with V(t):

V(t + dt) = (where we are going) + (distance)e
−t
τm = V∞ + (V(t) − V∞)e

−t
τm

In practice, these computations work best for small values of dt (in most cases we’ll use dt ≤ 0.1 ms).

Running a simulation – the “fire” part of the model. Now the integrate-and-fire model is almost
entirely in place. The only thing we need to add is the rule that when V(t + dt) ≥ Vthresh, simulate an
action potential by setting V(t) = Vpeak and V(t + dt) = Vreset. Vthresh is generally somewhere around -55
mV, Vpeak is around 40 mV, and Vreset is around -80 mV. In the next lectures we’ll discuss the biophysical
basis of why the neuron depolarizes (increases its membrane voltage) suddenly during the start of the
action potential and why the membrane voltage becomes hyperpolarized (decreased) after the action
potential is fired.

Computing firing rate. This is straightforward. We can simply count up the number of spikes that
were fired during the simulation (i.e. times when V ≥ Vthresh and divide by the length of time we were
simulating.
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Analytic solution for firing rate. While the full integrate-and-fire simulation is often useful (and is
necessary if you want to model things like spike timing), it turns out that there is an analytic method
for computing the expected firing rate of the model, given a constant external current Ie. We start with
the equation for finding the membrane voltage at time t:

V(t) = V∞ + (V(0) − V∞)e
−t
τm

We can then solve for t as follows:

V(t) − V∞ = (V(0) − V∞)e
−t
τm

V(t) − V∞
(V(0) − V∞)

= e
−t
τm

ln(
V(t) − V∞
V(0) − V∞

) =
−t
τm

τmln(
V(t) − V∞
V(0) − V∞

) = −t

t = −τmln(
V(t) − V∞
V(0) − V∞

)

Now let’s suppose our model neuron has just fired a spike in the previous timestep of our simulation.
We start by setting V(0) = Vreset. We next need to know how long it is until the neuron next fires a
spike (the inter-spike interval, tisi – or, in other words, the time t at which V(t) = Vthresh after starting at
V(0) = Vreset. Plugging in the appropriate values, we can compute tisi as follows:

tisi = −τmln(
Vthresh − V∞
Vreset − V∞

)

Recall that V∞ = E + RmIe. Thus

tisi = −τmln(
Vthresh − (E + RmIe)
Vreset − (E + RmIe)

) = −τmln(
Vthresh − E − RmIe

Vreset − E − RmIe
)

The firing rate (risi) is the inverse of the inter-spike interval:

risi = (−τmln(
Vthresh − E − RmIe

Vreset − E − RmIe
))−1

Putting it all together. To run the simulation, start with the basic model neuron equation:

τm
dV
dt
= E − V + RmIe

Now solve for dV:
dV
dt
=

E − V + RmIe

τm

dV = (
E − V + RmIe

τm
)dt

Start the simulation by setting V(0) = E. With each timestep set V(t + dt) = V(t) + dV. You’ll need to
re-compute dV for each time-step given V(t) and Ie(t) for the appropriate time t. Remember to include
the rule for firing a spike (and resetting) when V > Vthresh – otherwise the neuron won’t fire spikes.
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General MATLAB stuff. Set up your environment:

E = -70; %mV

c_m = 10; %nF / mmˆ2

r_m = 1; %M ohm * mmˆ2

A = 0.025; %mmˆ2

V_reset = -80; %mV

V_thresh = -55; %mV

V_peak = 40; %mV

dt = 0.1; %ms

t = 1:dt:1000; %ms

Now loop:

V(1) = E;

for i = 2:length(t)

if V(i-1) > V_thresh

{fire a spike}

else

{compute dV}

V(i) = V(i-1) + dV;

end

For the problem set, you should write a function that runs the integrate-and-fire model for a given set
of parameters. Your function should at return the firing rate (computed numerically, not using the risi

equation). You also might want to have it return the vector of V over time, depending on how you set
up your code.
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Problem Set 3 – Integrate-and-fire neuron model

Computational Neuroscience Summer Program

June, 2011

In this problem set you will be building a simple integrate-and-fire neuron. You should assume a specific
membrane capacitance of cm = 10 nF/mm2, a specific membrane resistance of rm = 1 MΩ·mm2, a resting membrane
potential of E = −70 mV, a reset potential of Vreset = −80 mV, an action potential threshold of Vthreshold = −55
mV, and a cell surface area of A = 0.025 mm2. Write up your results in a text editor of your choosing. Include
any relevant figures, your Matlab code, and any other calculations related to the problem set. You may work
individually or in groups, but each student should hand in their own report.

Equations

Cm = A · cm Rm = rm
A

τm = cm · rm V∞ = E + RmIext

V(t) = V∞ + (V(0) − V∞)e
−t
τm risi = (τmln( RmIext+E−Vreset

RmIext+E−Vthreshold
))−1

τm
dV
dt = E − V(t − 1) + RmIext

Problems

1. Model an integrate-and-fire neuron using the equations above and the following rule: when the neuron’s
membrane voltage exceeds Vthreshold, set the voltage in that timestep to Vpeak = 40 mV, and in the next timestep
set the voltage to Vreset. Set dt = 0.1 ms. Apply a square pulse of 0.5 nA from t = 250 ms until t = 750 ms in
your simulation. Use Matlab’s subplot command to plot the membrane voltage over time in the top panel and
Iext in the bottom panel (use the same time scale for the horizontal axis of both plots). No text is required for this
question; just include a plot.

2. Compute the average firing rate (spikes per second) of the integrate-and-fire neuron for the pulse interval
you used in quesion 1 (500 ms). Now plot simulated firing rate vs risi for several values of Iext (use Iext between
0 and 1 nA). How does the firing rate of the modeled neuron compare to the estimated firing rate given by risi?
Note: the equation for risi only holds if V∞ > Vthresh; otherwise, risi = 0.

3. Starting from 0 nA, gradually increase the amount of external current injected into the integrate-and-fire
neuron in steps of 0.01 nA. Keep the pulse duration constant at 500 ms. What is the smallest amount of current
you can inject which will still result in an action potential? Is there a maximum firing rate this neuron can achieve?
Why or why not?

4. Challenge problem. Compute firing rate as a function of pulse duration, Iduration, using 20 durations between
10 and 500 ms. Repeat this for several different values of Iext (try using 10 log-spaced values between 0.1 and 5
nA). Explain what you see. In particular, are the firing rate curves smooth or jagged? Why?

5. Vary the resting potential, specific capacitance, specific resistance, and surface area variables. How do
increases or decreases in these values affect firing rate of the integrate-and-fire neuron? Explain (try to stay at or
under 1-2 sentences per variable). Include plots for each of these variables.
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Lecture 4 – Hodgkin-Huxley neuron model

Computational Neuroscience Summer Program

June, 2011

Motivation. The integrate-and-fire model allows us to model spiking rates, but ignores the biophysical under-
pinnings of the action potential. The Hodgkin-Huxley model, proposed by Alan Hodgkin and Andrew Huxley
in 1952 explains how the action potential arises from ionic currents. They won the Nobel Prize for this model in
1963, and their model is still taught today in neuroscience classes around the world.

Recap. The model neuron equation we’ve been using is:

τm
dV
dt

= E − V + RmIe

In this equation, all of the membrane biophysics are (implicitly) lumped into the E − V term. The RmIe term
represents how external currents affect the cell. The basic idea of the Hodgkin-Huxley model is that we’ll expand
on the membrane biophysics portion of the equation by modeling ionic currents flowing through ion channels.
We’ll consider two ions: sodium and potassium. Before we fully explain the Hodgkin-Huxley model we’ll review
over some basic principles from physics and chemistry to gain a deeper understanding of the forces acting on
ions inside and surrounding the cell.

Diffusion. Imagine adding a drop of food coloring to a beaker of water. The food coloring diffuses (“spreads
out”) throughout the water uniformly. This is because of principle 1: molecules flow down their concentration
gradient.

Selective permeability. Let’s add a barrier to our imaginary beaker. If we drop some blue food coloring in
the left side, it will spread throughout that side but won’t spread to the right side. Now suppose the barrier is
permeable to red, but not to blue. If we drop some red food coloring in either side, it will spread throughout the
entire beaker, even though blue coloring is confined to the side it was dropped into. Ion channels allow the cell’s
membrane to become selectively permeable to a single type of ion.

Charges. Now let’s suppose blue represents negatively charged ions and red represents positive charged ions.
Since opposite charges attract, we need to consider this force acting on the ions in addition to simple diffusion.
In particular, rather than spreading out evenly throughout the beaker, some of the red ions will be attracted over
to the blue side. This is because of principle 2: molecules flow down their charge gradient.

Energy required to transport ions across the membrane. Membrane potentials are small, so ions are transported
across the membrane by thermal fluccuations. The thermal energy of an ion is kBT, where kB is Boltzman’s constant
and T is the temperature in degrees Kelvin. Biologists and chemists typically like to think about moles of ions
rather than single ions. A mole of ions has Avagadro’s number times as much energy as a single ion, or RT, where
R is the universal gas constant (8.31 Joules/mole ◦K = 1.99 cal/mole ◦K. At normal temperatures, RT ≈ 2, 500
joules/mole, or 0.6 kCal/mole.
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We can compute the energy gained or lost when a mole of ions crosses the membrane with a potential difference
VT across it. This energy is equal to FVT, where F is Faraday’s constant (F = 96,480 Columbs/mole), or Avagadro’s
number times the charge of a single proton, q. Setting FVT = RT gives:

VT =
RT
F

= kBTq

Equilibrium potential. The Equilibrium potential is the membrane voltage at which the net flow of a particular
ion into or out of the cell is zero (i.e., the concentration gradient perfectly offsets the charge gradient). If an ion
has an electrical charge zq, it must have a thermal energy of at least −zqV to cross the membrane (this quantity is
positive for z > 0 and V < 0). The probability that an ion has a thermal energy greater than or equal to −zqV when

the temperature (degrees Kelvin) is T is e
zqV
kBT , which is determined by integrating the Boltzmann distribution for

energies ≥ −zqV. In molar units, this can be written as:

e
zFV
RT

Then the concentration gradient offsets the charge gradient when

[outside] = [inside]e
zFE
RT

Where E is the “equilibrium potential” – the membrane potential at which the gradients cancel. We can solve for
E:

[outside]
[inside]

= e
zFE
RT

ln(
[outside]
[inside]

) =
zFE
RT

E =
RT
zF

ln(
[outside]
[inside]

)

Plugging in the appropriate sodium and potassium concentrations, we find that EK ≈ -70 to -90 mV and ENa ≈ 50
mV.

Reversal potential. When V < E, positive charges flow into the cell, causing the cell to depolarize (become more
positive). When V > E, positive charges flow out of the cell, causing it to hyperpolarize (become less positive).
Because E is the membrane potential at which the direction of net current flow reverses, E is also often called the
reversal potential.

Resting potential. When no current is being pumped into the neuron, the equilibrium potentials of the different
ions contained in the neuron and extracellular fluid all fight to bring the neuron’s membrane voltage to their
respective equilibrium potentials. The “strength” with which each ion pulls the membrane potential towards its
equilibrium potential is proportional to the permeability (“conductance”) of the the membrane to that ion, gi –
this depends on the number of open ion channels for that ion. The resting membrane potential is equal to:

Vrest =

∑
i(giEi)∑

i gi

This is called the Goldman-Hodgkin-Katz equation.
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Intuition underlying the shape of the action potential. The key biophysical property of neurons that gives rise
to the characteristic shape of the action potential is that the membrane’s permeability to different ions depends
on the membrane voltage. During the rising phase of the action potential, sodium channels open quickly and
potassium channels open slowly. Since the sodium conductance outweighs the potassium conductance, we see
from the Goldman-Hodgkin-Katz equation that the membrane voltage will head towards ENa. At the peak of the
action potential, sodium channels become blocked, and the membrane becomes almost exclusively permeable to
potassium – so during the falling phase, the membrane plummets towards EK. Then some resetting happens, and
the membrane potential returns to Vrest. Now let’s get into the details and the equations...

Voltage-gated potassium channels. The voltage-gated potassium channel is comprised of four identical (in-
dependent) subunits. For the channel to conduct potassium ions, all four subunits have to be in their open
configuration. The probability that a given potassium channel is open, PK is equal to the probability that a given
subunit is open, n, raised to the fourth power:

PK = n4

Note that if n is the probability that a given subunit is open, then 1−n is the probability that the subunit is closed.
The potassium channel subunits contain voltage sensors which make it more likely that the subunits will be

open (activated) when the membrane is depolarized and less likely that the subunits will be open (deactivated)
when the membrane is hyperpolarized. Thus, we need to use (and update) the membrane voltage at each time t
in our calculations.

Let’s define an opening rate, αn(V) and a closing rate, βn(V) for the Potassium channel subunits. The probability
that a subunit gate opens over a short interval of time is equal to the probability of finding the gate closed (1 − n)
multiplied by the opening rate, αn(V). Likewise, the probability that a subunit gate closes over a short interval of
time is equal to the probability of finding the gate open (n) multiplied by the closing rate, βn(V). The the rate at
which the open probability for a subunit gate changes is given by the difference between these two terms:

dn
dt

= αn(V)(1 − n) − βn(V)n

Another useful form of this equation is to divide through by the term αn(V) + βn(V):

τn(V)
dn
dt

= n∞(V) − n, where

τn =
1

αn(V) + βn(V)
and

n∞(V) =
αn(V)

αn(V) + βn(V)

This equation indicates that for a given voltage, V, n approaches the limiting value n∞(V) exponentially with
time constant τn. Hodgkin-Huxley found that the following rate functions fit their data:

αn(V) =
0.1(V + 55)

1 − e−0.1(V+55)

This function first increases gradually, and then increases approximately linearly.

βn(V) = 0.125e−0.0125(V+65)

This function decays exponentially towards zero.
Since the membrane contains a very large number of potassium channels, the fraction of channels open at

any given time is equal to PK = n4. The membrane’s ability to conduct potassum (gK) is equal to PK times the
membrane’s maximal potassium conductance, ḡK.

3



Voltage-gated sodium channels. Voltage-gated sodium channels consist of three main subunits, each of which
are open with probability m. As with potassium channel subunits, sodium subunit opening and closing rates are
given by αm and βm, respectively. These subunits open (activate) quickly when the membrane is depolarized and
close (inactivate) when the membrane is hyperpolarized.

In addition to the three main subunits, the sodium channel contains a fourth subunit which has a negative
charge, and is open with probability h. When the cell is depolarized, the subunit gets attracted to the inside of
the cell and blocks (“inactivates”) the channel. In order to “unblock” the channel, the cell needs to be sufficiently
hyperpolarized (past its normal resting potential). The unblocking is called “de-inactivation.” The equations for
dm and dh are identical to the equations for dn, but with n replacing with m or h. The equations for αm and βm are:

αm(V) =
0.1(V + 40)

1 − e−.1(V+40)

βm(V) = 4e−0.0556(V+65)

(these are of the same form as the equations for αn and βn. The equations for αh and βh are:

αh(V) = 0.07e−.05(V+65)

βn(V) =
1

1 + e−.1(V+35)

which are of the opposite form as for the n and m equations, since the h subunit inactivates with depolarization
and de-inactivates with hyperpolarization.

Since the membrane contains a very large number of sodium channels, the fraction of channels open at any
given time is equal to PNa = m3h. The membrane’s ability to conduct sodium (gNa) is equal to PNa times the
membrane’s maximal Potassium conductance, ḡNa.

Leak channels. The last type of channels in the Hodgkin-Huxley model is the leak channel. Leak channels are
always open, regardless of membrane voltage. The total leak conductance is represented by ḡL.

Derivation of full model. For the integrate-and-fire model we used:

τm
dV
dt

= E − V + RmIe

We can re-write as:
cmrm

dV
dt

= (E − V) +
rm

A
Ie

Now we divide both sides by rm:

cm
dV
dt

=
1

rm
(E − V) +

Ie

A

The full model is of the form:
cm

dV
dt

= −im +
Ie

A
,

where
im = ḡL(V − EL) + gK(V − EK) + gNa(V − ENa)

This is simply the written-out form of the Goldman-Hodgkin-Katz equation. As in the integrate-and-fire model,
we start by solving for dV and setting V(t + dt) = V(t) + dV in each time step of the simulation.
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Problem Set 4 – Hodgkin-Huxley neuron model

Computational Neuroscience Summer Program

June, 2011

In this problem set you will be building a Hodgkin-Huxley model neuron. Write up your results in a text
editor of your choosing. Include any relevant figures. Include a printout of your Matlab code as well as any
calculations that aren’t in the code. You may work individually or in groups, but each student should hand in
their own report.

Equations

τx(V) dx
dt = x∞(V) − x τx(V) = 1

αx(V)+βx(V) x∞(V) =
αx(V)

αx(V)+βx(V)

αn(V) =
0.1(V+55)

1−exp(−.1(V+55)) αm(V) =
0.1(V+40)

1−exp(−.1(V+40)) αh(V) = 0.07 ∗ exp(−.05(V + 65))
βn(V) = 0.125 ∗ exp(−0.0125(V + 65)) βm(V) = 4 ∗ exp(−.0556(V + 65)) βh(V) = 1

1+exp(−.1(V+35))
PK = n4 PNa = m3h
gK = ḡKPK gNa = ḡNaPNa

Problems

1. Build a Hodgkin-Huxley model using the following equation, in addition to those listed above:

V(t + dt) = V(t) +

[
−im + Iext

A

]
dt

cm
,

where
im = ḡL(V(t) − EL) + gK(V(t) − EK) + gNa(V(t) − ENa),

and where ḡL = 0.003 mS/mm2, ḡK = 0.36 mS/mm2, ḡNa = 1.2 mS/mm2, EL = −54.387 mV, EK = −77 mV, ENa = 50
mV, and cm = 0.1 nF/mm2. Set V(0) = E = −65 mV. You should simulate a 15 ms segment (use dt ≤ 0.01 ms). Pulse
the neuron with a 5 nA/mm2 pulse between 5 and 8 ms in your simulation; this should result in a single action
potential at between 5 and 10 ms. Plot the V, n, m, and h as a function of time. Congratulations — you’ve just
replicated a Nobel prize-worthy result!

2. Explain what’s happening in problem 1. In particular: what do V, n, m, and h mean in terms of the simulated
neuron? Explain the relative time course of each of these variables. How do n, m, and h interact to produce V?

3. Tetrodotoxin (TTX), a pufferfish-derived toxin, selectively blocks voltage-sensitive sodium channels, effec-
tively setting PNa = 0. Simulate the addition of TTX at t = 0 ms, and re-plot V, n, m, and h. Does the neuron still
fire an action potential? Why or why not?

4. Tetraethylammonium (TEA) selectively blocks voltage-sensitive potassum channels, effectively setting PK = 0.
Simulate the addition of TEA at t = 0 ms, and re-plot V, n, m, and h. Does the neuron still fire an action potential?
Why or why not? (Remember to remove TTX first!)

5. Challenge problem. How might you compute the firing rate of your Hodgkin-Huxley neuron? Simulate a
1000 ms run with a pulse from 250 to 750 ms, and measure how many spikes are fired. Repeat this procedure for
10 pulse strengths between 0.01 and 10 nA. Plot firing rate as a function of pulse strength.
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Lecture 5 – Extensions of the Hodgkin-Huxley model

Computational Neuroscience Summer Program

June, 2011

Motivation. The Hodgkin-Huxley model gave us a way to explicitly model ionic currents using the expected
conductances of each ion and the driving forces on those ions. We will now go one step further by explicitly
simulating the stochastic actions of individual subunits of the potassium and sodium ion channels.

Potassium channel review. The potassium channel is comprised of four identical subunits. In the Hodgkin-
Huxley model, the probability that a given channel is open is equal to pK = n4, where n is the probability of a
single subunit being open. Recall that n increases when the cell is depolarized and decreases when the cell is
hyperpolarized. The opening rate of each subunit is αn and the closing rate is βn:

αn(V) =
0.01(V + 55)
1 − e−0.1(V+55)

βn(V) = 0.125e−0.0125(V+65)

Stochastic model. In the stochastic model, we represent each potassium channel using a state diagram:

1
closed

2
closed

3
closed

4
closed

5
open

4αn 3αn 2αn αn

βn 2βn 3βn 4βn

where the labels represent the probability of transitioning between each state in the indicated direction. We
simulate a state transition from state X to Y during a time interval dt if a random number, chosen with each
new timestep of the simulation, is less than the probability of transitioning between X and Y. The channel is
considered to be open at time t if the ion channel is in the 5th state at time t. In simulations, we’ll need to keep
track of how many of the ion channels are open vs. closed during each time step. As the number of channels (N)
increases, this model becomes arbitrarily similar to the Hodgkin-Huxley version (you’ll be verifying this in the
problem set). Note that you can compute PK for the stochastic model at time t by simply computing the fraction
of channels that are in state 5 at time t.

Sodium channel review. The sodium channel is comprised of three identical subunits and an inactivation gate.
The three identical subunits each open with probability m (where m increases as the cell is depolarized and
decreases as the cell is hyperpolarized). The opening rates for the three subunits are αm, and the closing rates are
βm. The inactivation gate is open with probability h, where h decreases as the cell is depolarized and increases
when the cell is hyperpolarized. The opening and closing rates are αh and βh, respectively.

αm(V) =
0.1(V + 40)

1 − e−.1(V+40)
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βm(V) = 4e−0.0556(V+65)

αh(V) = 0.07e−.05(V+65)

βn(V) =
1

1 + e−.1(V+35)

Stochastic sodium channel model. In the Hodgkin-Huxley model, the three subunits and the inactivation gate
are assumed to be independent (that’s why the probabilities are multiplied into m3h). However, this is not quite
true. A more accurate description is something like the following:

1
closed

2
closed

3
closed

4
open

5
inactivated

3αm 2αm αm k3
βm 2βm 3βm

k1

k2
αh

In particular, the ball mechanism of the inactivation gate is located inside the cell membrane, and cannot be
directly affected by potential across the membrane. The inactivation gate only comes into play when at least one
of the subunits is open (i.e., when the channel occupies states 2, 3, or 4 in the diagram). In addition, according to
this model, if the neuron is in the inactivate state (state 5), it can only transition to state 3.

Whereas the transitions of the three subunits between states 1, 2, 3, and 4 in the stochastic model are identical
to in the Hodgkin-Huxley model, the behavior of the inactivation gate is much different – in particular, the
inactivation gate in the stochastic model depends on the states of the three subunits.

As in the stochastic potassium channel model, you can compute the PNa for the stochastic sodium channel at
time t by computing the fraction of sodium channels which occupy state 4 at that time.

Replacing the Hodgkin-Huxley channels with stochastic channels. In the Hodgkin-Huxley model, we com-
puted PK = n4 and PNa = m3h with each time step, updating n,m, and h as we stepped through the model. In the
stochastic model, we compute PK and PNa directly, so we no longer need to compute n, m, or h. Other than the
difference in computing PK and PNa, the stochastic model is identical to the Hodgkin-Huxley model.

Some implementation suggestions. There are a number of possible ways to implement the stochastic channel
models, with some methods being more efficient than others. Particularly when the number of channels is large,
it becomes very important to code the simulation efficiently (read: vectorize!) if the simulation is to finish running
in a reasonable amount of time. To start you off, we’ll go through a simple two-state example. The states are
x (closed) and y (open). Let’s suppose that the probability of transitioning from state x to state y is pxy and the
probability of transisitioning from y to x is pyx. To simulate N = 1000 of these simple two-state channels, we could
write something like the following:
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dt = 0.1;

t = 0:dt:1000;

states = ones(1,N);

n_open = zeros(size(t));

pOpen = [p_xy 0];

pClose = [0 p_yx];

for i = 1:length(t)

open_chooser = rand(size(states)) < (dt*pOpen(states));

states(open_chooser) = states(open_chooser) + 1;

close_chooser = rand(size(states)) < (dt*pClose(states));

states(close_chooser) = states(close_chooser) - 1;

n_open(i) = sum(states == 2);

end

The potasium channel simulation is identical to the above code, but with the pOpen and pClose variables
modified as in the state diagram. To implement the stochastic sodium channel model, you need to seperately
compute the probabilities of opening subunits and opening the inactivation gate.
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Problem Set 5 – Extensions of the Hodgkin-Huxley model

Computational Neuroscience Summer Program

June, 2011

In this problem set you will be extending the standard Hodgkin-Huxley model you constructed in Problem
Set 4. In this extended model we will be simulating the actions of individual voltage-dependent Sodium and
Potassium channels. Feel free to re-use any code from Problem Set 4 that you think would be useful. Write up
your results in a text editor of your choosing. Include any relevant figures. Include a printout of your Matlab
code as well as any calculations that aren’t in the code. You may work individually or in groups, but each student
should hand in their own report.

Equations

τx(V) dx
dt = x∞(V) − x τx(V) = 1

αx(V)+βx(V) x∞(V) =
αx(V)

αx(V)+βx(V)

αn(V) =
.01(V+55)

1−exp(−.1(V+55)) αm(V) =
0.1(V+40)

1−exp(−.1(V+40)) αh(V) = 0.07 ∗ exp(−.05(V + 65))
βn(V) = 0.125 ∗ exp(−.0125(V + 65)) βm(V) = 4 ∗ exp(−.0556(V + 65)) βh(V) = 1

1+exp(−.1(V+35))
PK = n4 PNa = m3h
gK = ḡKPK gNa = ḡNaPNa

Problems

1. Construct and simulate the stochastic K+ channel model as shown in the state diagram below. The diagram
shows transitions between different states of a K+ channel. The symbols αn and βn represent the opening and
closing rates, respectively, of individual K+ channels (these are the same variables you used in Problem Set 4).
Set the rate constants equal to their value at 10 mV (i.e., use αn(10mV) = 0.65/ms and βn(10mV) = 0.05/ms).
Transitions are made between states with each iteration of your program if a random number chosen uniformly
between 0 and 1 is less than the corresponding rate for that transition time. For example, if a channel is in state 1,
that channel will transition to state 2 during the current iteration of your program if the chosen random number
is less than 4αndt. As the channel(s) make transitions between states, keep track of whether state 5 is occupied. If
so, assume that each channel conducts 1 pA (10−12 A) of current; otherwise no current flows through the channel.
Plot currents generated by this model for N =1, 10, and 100 channels over a 20 ms period (use dt = 0.01 ms).

1
closed

2
closed

3
closed

4
closed

5
open

4αn 3αn 2αn αn

βn 2βn 3βn 4βn

2. The Hodgkin-Huxley description of the K+ channel predicts the current flowing in these simulations would
be Nn4 pA, where N is the number of K+ channels and n is the K+ activation variable (same as in Problem Set
4). On a single plot, show the amount of current predicted by the Hodgkin-Huxley prediction and the amount of
current predicted with the stochastic model. (Use N = 1000.)
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3. Construct an stochastic Na+ channel model analogous to the K+ model, using the state diagram below. The
symbols αm and βm represent opening and closing rates of the three main subunits of the sodium channel. Acti-
vation and deinactivation rates of the sodium channel gate are represented by k1, k2, and k3. Set the rate constants
equal to their value at 10 mV (i.e., use αm(10 mV) =5.034/ms, αh(10 mV) =0.0016/ms, and βm(10 mV) =0.0618/ms).
Use k1 = 0.24/ms, k2 = 0.4/ms, and k3 = 1.5/ms. As the channel(s) make transitions between states, keep track of
whether state 4 is occupied. If so, assume that each channel conducts -1 pA (10−12 A) of current; otherwise no
current flows through the channel. Plot currents generated by this model for M =1, 10, and 100 channels over a
20 ms period.

1
closed

2
closed

3
closed

4
open

5
inactivated

3αm 2αm αm k3
βm 2βm 3βm

k1

k2
αh

4. The Hodgkin-Huxley description of the Na+ channel predicts the current flowing in these simulations would
be Mm3h pA, where M is the number of Sodium channels. On a single plot, show the amount of current
predicted by the Hodgkin-Huxley prediction and the amount of current predicted with the stochastic model.
(Use M = 1000.)

5. Challenge problem. Modify the Hodgkin-Huxley model from Problem Set 5 to explicitly simulate Sodium
and Potassium channels using the stochastic models above (to start, use N = M = 1000). You will need to
update the transition probabilities αn, αm, αh, βn, and βm with each time step, since those transition probabilities
are voltage-dependent. k1, k2, and k3 are constants. Hint: PX is equal to the total proportion of X channels
currently open. Simulate a 20 ms interval. Apply an external current of Iext = 5 nA/mm2 from 5 to 8 ms. Plot V,
PK, and PNa as a function of time.
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Computing a spike-triggered average



Two-spike-triggered average

• You might expect that the two-spike average would be a 
linear summation of the single-spike averages.

• However, at some neurons multiple spikes are caused by 
especially large input signals.



Problem Set 6 -- Introduction to data analysis

Computational Neuroscience Summer Program

June, 2011

These questions use two Matlab files:
! http://www.neurotheory.columbia.edu/~larry/book/exercises/c1/data/c1p8.mat

! http://www.neurotheory.columbia.edu/~larry/book/exercises/c1/data/c2p3.mat

These questions were adapted from Dayan & Abbott, who in turn took inspiration from 
Sebastian Seung.

1.! Reverse correlation
! Load c1p8.mat.  These data were collected for 20 minutes at a sampling rate of 
500 Hz. In the file, rho is a vector that gives the sequence of spiking events or 
nonevents at the sampled times (every 2 ms). When an element of rho is one, this 
indicates the presence of a spike at the corresponding time, whereas a zero value 
indicates no spike. The variable stim gives the sequence of stimulus values at the 
sampled times. Calculate and plot the spike-triggered average from these data over the 
range from 0 to 300 ms (i.e, 150 time steps). How do you explain the shape of this 
curve for values of t > 0?

2.! Challenge problem: Two-spike reverse correlation
! Again using c1p8.mat, calculate and plot stimulus averages triggered on events 
consisting of a pair of spikes (which need not necessarily be adjacent) separated by a 
given interval. Plot these two-spike-triggered average stimuli for various separation 
intervals ranging from 2 to 1 0 0 ms. (Hint: you can use convolution for pattern 
matching: e.g., find(conv(rho,[1 0 1])==2) will contain the indices of all the 
events with two spikes separated by 4 ms.) Plot, as a function of the separation 
between the two spikes, the sum of the magnitudes of the differences between the two-
spike-triggered average and the sum of two single-spike-triggered averages (obtained in 
exercise 1) separated by the same time interval. At what temporal separation does this 
difference become negligibly small?

3. Two-dimensional reverse correlation.
! Load c2p3.mat.  This file contains the responses of a cat LGN cell to two-
dimensional visual images (these data are described in Kara et al., 2000).  In the file, 
counts is a vector containing the number of spikes in each 15.6-ms bin, and stim 
contains the 32767, 16 x 16 images that were presented at the corresponding times.  
Specifically, stim(x,y,t) is the stimulus presented at the coordinate (x,y) at time-
step t.  Note that stim is an int8 array that must be converted into a double using the 
matlab command stim=double(stim) in order to be manipulated within Matlab.  
Calculate the spike-triggered average images for each of the 12 time steps before each 
spike and show them all (using imagesc and subplot).  Note that in this example, the 
time bins can contain more than one spike, so the spike-triggered average must be 



computed by weighting each stimulus by the number of spikes in the corresponding 
time bin, rather than weighting it by either 1 or 0 depending on whether a spike is 
present or not.  (Tip: Make the plots look even cleaner by using the same color scale 
limits for all plots (search ʻclimʼ).)  In the averaged images, you should see a central 
receptive field that reverses sign over time.  Also, by summing up the images across 
one spatial dimension, produce a figure like the one below that plots the response as a 
function of time (τ) and one spatial dimension (x).


