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Abstract—Recent work has revealed that cognitive processes
are often reflected in patterns of functional connectivity through-
out the brain (for review see [16]). However, examining functional
connectivity patterns using traditional methods carries a substan-
tial computational burden (of computing time and memory). Here
we present a technique, termed Hierarchical Topographic Factor
Analysis, for efficiently discovering brain networks in large multi-
subject neuroimaging datasets.

I. INTRODUCTION

The most common approaches for analyzing functional
Magnetic Resonance Imaging (fMRI) data involve relating the
activity of individual voxels or multi-voxel spatial patterns of
brain activity to the subject’s cognitive state [4], [5], [11],
[21]. In contrast, functional connectivity analyses estimate
connections between brain regions by correlating the time
series of activations (across images) of each pair of voxels [14].
This cutting-edge approach has already led to important new
insights into how the brain’s connections change during dif-
ferent experimental conditions [16].

Because the connectivity matrix grows with the square
of the number of voxels, both filling in the entries of a
connectivity matrix and storing it in memory can become
intractable for fMRI images with tens of thousands of voxels.
For example, the connectivity matrix for a 50,000 voxel image
occupies approximately 5 GB of memory (assuming single
precision floating point entries). Storing many such matrices
in memory (e.g. to compare different subjects and/or exper-
imental conditions) can be impractical on modern hardware
(although see [18] for an alternative approach).

Topographic Factor Analysis (TFA) provides an alternative
means of representing the brain’s connectivity patterns that
scales well to large images [9]. TFA casts each of N brain
images as a linear combination of latent sources [Gaussian
radial basis functions (RBFs)]. Each source can be interpreted
as a node in a simplified representation of the brain’s network.
(The number of sources, K, is chosen by the practitioner.)
Applying TFA to an fMRI dataset reveals the locations and
sizes of the sources (i.e. the centers and widths of their RBFs),
as well as the per-image source weights. In this way, the N
by K matrix of source weights may be viewed as a low-
dimensional embedding of the original dataset. Further, the
covariance of the weight matrix can be taken as a proxy for
the signs and strengths of the node-to-node connections.

One limitation of TFA is that it treats each subject’s data
as independent. This means that all hypothesis testing (e.g.
on connection strengths that distinguish between experimental
conditions) must be performed within-subject. Here we present
Hierarchical TFA (HTFA), which extends the TFA model to
incorporate data from multiple subjects. HTFA uses an entire

multi-subject dataset to learn a global template of source
centers, widths, and weights that describe how people’s brains
look and behave in general. Then we cast each individual
subject’s sources as a perturbation of that global template.
This allows us to compare how a given source behaves in
one subject’s brain to how that same source behaves in another
subject’s brain. We can thereby test whether particular patterns
of activation, or particular source-source interactions, vary re-
liably across subjects in different conditions of an experiment.
The hierarchical implementation also has the advantage that,
in theory, ambiguities in one subject’s data may be resolved
by examining the other subjects’ data.

In the next section we formally define the HTFA model
and describe how we fit the model’s parameters to large fMRI
datasets. We then use HTFA to discover function-dependent
brain networks in three fMRI datasets.

II. METHODS

HTFA comes from a family of models, called factor
analysis models, that also includes TFA [9], Topographic
Latent Source Analysis (TLSA) [7], Principal Components
Analysis (PCA) [12], Exploratory Factor Analysis (EFA) [15],
and Independent Components Analysis (ICA) [3], [8], among
others. If we have organized our collection of images (from
a single subject) into an N by V matrix Y (where N is the
number of images and V is the number of voxels), then factor
analysis models decompose Y as follows:

Y ≈WF, (1)

where W is an N by K weight matrix (which describes how
each of K factors are activated in each image), and F is a
K by V matrix of factor images (which describes how each
factor looks). The general idea is that different techniques place
different constraints on what form W and/or F should take (i.e.
by changing the function being optimized in order to settle on
a specific choice of W and F). We may then use W as a low
dimensional embedding of the original data (e.g. to facilitate
interpretability or computational tractability), or examine the
factor images in F to gain insights into the dataset.

In standard approches such as PCA and ICA, the entries
of W and F are real numbers. In PCA, each row of F is an
eigenvector of the data covariance matrix, and the weights (W)
are chosen to minimize the reconstruction error (i.e. to make
WF as close as possible to Y). In ICA the goal is to minimize
the statistical dependence between the rows of F while also
adjusting W to minimize the reconstruction error. In this way,
the factor images (the rows of F) obtained using PCA and
ICA are unstructured images (i.e. activation patterns), of the
same complexity as observations in the original dataset.

In TLSA (and TFA, which is a special case of TLSA),
each row of F is parameterized by the center parameter, µ,978-1-4799-4149-0/14/$31.00 c©2014 IEEE
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Fig. 1. Graphical model for HTFA. Each variable in the model appears
as a circle; hidden variables are unshaded and observed variables are shaded.
Arrows denote conditional dependence, originating at terms that appear on
the right sides of conditionals and pointing towards terms that appear on the
left sides. Rectangular plates denote repeated structure, where the number of
copies is indicated within each plate (e.g. Ns, S, or K). For a comprehensive
introduction to graphical models see [2]. Variables are defined in Algorithm 1.

and width parameter, λ, of an RBF. If an RBF has center µ
and (log) width λ, then its activation RBF(r|µ, λ) at location
r is given by:

RBF(r|µ, λ) = exp

{
−||r− µ||

2

exp (λ)

}
. (2)

The factor images, termed sources, are filled in by evaluating
each RBF, defined by the corresponding parameters for each
factor, at the location of each voxel. In contrast to the factors
obtained using PCA or ICA, TLSA’s more constrained factors
are easily interpretable: each factor corresponds to the structure
or group of structures in the brain over which the factor spreads
its mass (which is governed by µ and λ). While constraining
the factors in this way reduces reconstruction accuracy, it
substantially improves interpretability. For example, PCA’s
factors are not constrained (i.e. each factor’s mass need not
be concentrated in one brain region), and therefore explain
the data well but are difficult to interpret without additional
processing. HTFA works similarly to TFA, but places an
additional constraint over the factors to bias all of the subjects
to exhibit similar factors. In this way, whereas TFA attempts to
find the factors that best explain an individual subject’s data,
HTFA attempts to find the factors that are common across a
group of subjects.

We formulate HTFA as a probabilistic model, which can be
represented in graphical model notation (Fig. 1). The graphical
model specifies the conditional dependencies in the model:

p(Y1...S ,Ω) = LG, (3)

where Ys is the Ns by Vs matrix of images from subject s,1
Ω is the set of hidden variables in the model

Ω = {σ2
y1...S

, w1...N,1...K,1...S , µ1...K,1...S , λ1...K,1...S ,

µ̃w1...K,1...S
, κ̃11...K,1...S

,

µ̄µw1...K
, κ̄µw1...K

, µ̄κw1...K
, κ̄κw1...K

, µ̄µ1...K
, κ̄µ1...K

,

µ̄λ1...K
, κ̄λ1...K

}, (4)

the probability of the subject-specific template L is given by

L =
S∏
s=1

p(σ2
ys)

Ns∏
n=1

p(yn,s|wn,1...K,s, µ1...K,s, λ1...K,s)

K∏
k=1

p(wn,k,s|µ̃wk,s , κ̃wk,s)

p(µ̃wk,s |µ̄µwk , κ̄µwk )p(κ̃wk,s |µ̄κwk , κ̄κwk )

p(µk,s|µ̄µk , κ̄µk)p(λk,s|µ̄λk , κ̄λk), (5)

and where the probability of the global template G is given
by

G =
K∏
k=1

p(µ̄µwk )p(κ̄µwk )p(µ̄κwk )p(κ̄κwk )p(µ̄µk)p(κ̄µk)

p(µ̄λk)p(κ̄λk). (6)

(Note that the hyperparameters have been omitted for nota-
tional simplicity.)

In the graphical model (Fig. 1), variables associated with
the subject-specific template are found in the yellow plate.
These include the subject-specific source centers, widths, and
weights, as well as the observed images.2 Variables associated
with the global template are found outside of the yellow plate;
these include the means and log precisions of the source center,
width, and weight distributions. The subject-specific templates
are conditioned on the global template, thereby associating
data from different subjects. (This interaction between the
subject-specific and global templates occurs in the orange
region of the graphical model.)

Our goal is to infer a posterior distribution over the model’s
hidden variables (e.g. source centers, widths, and weights).
The posterior distribution p(Ω|Y1...S) tells us how likely each
hidden variable is to be set to a particular value, given the data.

To begin to compute the posterior, we first write down
HTFA’s generative process (Alg. 1); this algorithm defines a
recipe for producing the observations (in this case, an fMRI
dataset). Each time we run the generative process, we obtain a
single sample of each of the model’s variables (e.g. the source
centers, widths, and weights for each subject) and a synthetic
dataset. When we fit HTFA to a real dataset, we “reverse” the
generative process by computing the most probable settings of

1Note that both the number of images from subject s, Ns, and the number
of voxels from subject s, Vs, may vary from subject to subject.

2We draw a distinction between the subject-specific per-image source
weights, w1...N,1...K,1...S , and the subject-specific distributions from which
they are drawn. Specifically, the per-image weights are drawn from a distribu-
tion whose mean is µ̃w1...K,1...S and whose log precision is κ̃w1...K,1...S . In
other words, each source has an associated subject-specific mean that governs
how much (or little) that source will be expressed across images, and a subject-
specific log precision that governs how variable the source’s weights will be
across images.



each variable given the data. In effect, we tune the parameters
of the model’s generative process until the data it produces
look like our observations. For example, the generative process
posits that source k’s center location is drawn (independently
for each subject) from a Multivariate Gaussian distribution
centered on source k’s center location in the global template.
The goal of posterior inference is to determine which particular
subject-specific source centers, widths, and weights were most
probably sampled from the global template, and what the
global template looks like, given the observed brain images.

Algorithm 1: HTFA’s generative process. Note that we
parameterize the variances of the Gaussian distributions
using log precision parameters (equal to the log of the
inverse of the variance). This parameterization is equiv-
alent to the usual one, and facilitates our approximate
inference algorithm. We use RBFs(·) to denote a vector
obtained by evaluating an RBF with the given parameters
at the locations of each of subject s’s voxels.

for k = 1 to K do
Pick mean of template weight distribution for source k:
µ̄wk ∼ N (µ̂µ̄w , κ̂µ̄w );
Pick precision of template weight distribution for source k:
κ̄wk ∼ N (µ̂κ̄w , κ̂κ̄w );
Pick mean of template center distribution for source k (repeat for each
dimension; not shown in graphical model): µ̄µk ∼ N

(
µ̂µ̄µ , κ̂µ̄µ

)
;

Pick precision of template center distribution for source k (repeat for each
dimension; not shown in graphical model): κ̄µk ∼ N

(
µ̂κ̄µ , κ̂κ̄µ

)
;

Pick mean of template width distribution for source k:
µ̄λk ∼ N

(
µ̂µ̄λ , κ̂µ̄λ

)
;

Pick precision of template width distribution for source k:
µ̄λk ∼ N

(
µ̂µ̄λ , κ̂µ̄λ

)
;

for s = 1 to S do
Pick mean of subject-specific weight distribution for source k:
µ̃wk,s ∼ N

(
µ̄µwk

, κ̄µwk

)
;

Pick precision of subject-specific weight distribution for source k:
κ̃wk,s ∼ N

(
µ̄κwk

, κ̄κwk

)
;

Pick center of subject-specific source k (repeat for each dimension;
not shown in graphical model): µk,s ∼ N

(
µ̄µk , κ̄µk

)
;

Pick width of subject-specific source k: λk,s ∼ N
(
µ̄λk , κ̄λk

)
;

for n = 1 to Ns do
Pick weight of source k in image n of subject s:
wn,k,s ∼ N

(
µ̃wk,s , κ̃wk,s

)
;

end
end

end
for s = 1 to S do

Pick subject-specific noise parameter: κys ∼ N
(
µ̂
σ2
y
, κ̂
σ2
y

)
;

for n = 1 to Ns do
Pick image n for subject s:
yn,s ∼ N

(∑K

k=1
wn,k,sRBFs(µk,s, λk,s), κysIV

)
;

end
end

In theory, we could compute the posterior using Bayes’
rule (e.g. [6]):

p(Ω|Y1...S) =
p(Y1...S |Ω)p(Ω)∫
Ω
p(Ω,Y1...S)dΩ

. (7)

However, computing the denominator is intractable, as it would
require (numerically) integrating over all possible settings of
the hidden variables in the model. Therefore, rather than
computing the posterior exactly, we instead approximate it
using Black Box Variational Inference [13] (the full details
of this technique are beyond the scope of this document
due to space constraints, but are equivalent to those in [9]).

Running this inference procedure yields an approximation of
the posterior, q(Ω), which we use as a proxy for the true
posterior p(Ω|Y1...S).

III. RESULTS

Applying HTFA to a multi-subject fMRI dataset reveals the
locations and widths of K sources that are reflected in general
across subjects (in a global template) and in individual subjects
(whose sources are modeled as perturbations of the global
template). We also obtain, for each subject, a set of K source
weights for each of that subject’s images. We use the K by K
covariance matrix of each subject’s Ns by K weight matrix3 to
estimate the connection strengths between the sources. Because
HTFA associates sources across subjects (via the global tem-
plate), this gives us a means of comparing connectivity across
subjects. In other words, source k in subject x will “mean”
the same thing as source k in subject y 6= x. Specifically,
the same source number will be located in about the same
location, and exhibit about the same (average) weights, across
different subjects. We can also use this technique to infer
functional connectivity by examining how the source weights
covary within each experimental condition.

We sought to evaluate our approach by applying HTFA
to three fMRI datasets. For each dataset we computed, for
each subject, the source-to-source connectivity matrices for
each condition of the experiment. We then asked whether
any connections varied their strengths between conditions in
a similar way across subjects. Our approach was intended to
assess whether the connectivity matrices identified by HTFA
were stable (i.e. similar across subjects).

The first dataset, which we refer to as the Face/Scene
Dataset, contains data from 18 subjects who viewed images
of male and female faces and indoor and outdoor scenes (the
data were from a functional localizer task collected by [17]).
Each testing session lasted 6 min 6 s, and was organized into
12 blocks (6 “face” blocks and 6 “scene” blocks). During
each block, 12 stimuli were presented for 500 ms, every 1500
ms (with a 12 s fixation occurring between each block). As
the images were displayed, the subjects made judgements (by
pressing buttons) about whether the faces were male or female,
and whether the scenes images were of indoor or outdoor
locations.

Previous studies of this dataset [18], [19] had revealed
that, whereas multivariate pattern classification analyses [11]
typically identify only posterior regions (e.g. fusiform face
area, parahippocampal place area) as distinguishing face and
scene images, functional connectivity analyses reveal a more
complete picture– specifically, frontal regions vary their con-
nectivity with these posterior regions differently while viewing
the two classes of stimuli. To examine these patterns using
HTFA, we estimated face and scene connectivity matrices for
each subject. We then used t-tests to compare the distributions
of connectivity strengths during face vs. scene viewing. As
shown in Figure 2A, HTFA (qualitatively) recovers the previ-
ously reported connectivity patterns reflected in the dataset.

We refer to the second fMRI dataset we examined as the
Tasks Dataset. The Tasks Dataset (collected by W. Keung and

3We use the maximum a posteriori (MAP) per-image source weights for
this computation, as in [9].
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Fig. 2. Function-dependent brain networks discovered using HTFA. A.
Face/Scene Dataset. Connections that were reliably stronger when subjects
viewed images of faces are shown in blue, and connections that were reliably
stronger when subjects viewed images of scenes are shown in red. Connections
whose strengths did not reliably distinguish between the two conditions (after
correcting for multiple comparisons using a p = 0.05 threshold [1]) are
omitted. B. Tasks Dataset. Connections whose strengths reliably distinguished
between any pair of tasks, after correcting for multiple comparisons, are
shown in red. Connections that did not reliably vary their strengths across
conditions are omitted. C. Nouns Dataset. Connections whose strengths
reliably distinguished between any pair of categories, after correcting for
multiple comparisons, are shown in red. Connections that did not reliably
vary their strengths across categories are omitted. This figure was created
using BrainNet viewer [20].

J. D. Cohen, unpublished) contains data from 18 subjects who
performed a battery of 12 mini-tasks for 20 minutes (where
each task lasted between 30 and 60 seconds and was sampled
at least twice). The full set of tasks incorporated a number of
classic paradigms, including the n-back memory task, Tower
of London and scheduling tasks, and the Stroop task.

Our primary objective in examining the Tasks Dataset
was to discover connections whose strengths varied reliably
between any of the different task-types. We used HTFA to
estimate, for each subject, a connectivity matrix for each of the
12 tasks. We then used repeated measures analyses of variance
to detect pairs of nodes whose connection strengths varied
from task to task in a similar way across subjects (Fig. 2B).

We also examined a third fMRI dataset, collected by [10],
which we refer to as the Nouns Dataset. The dataset comprises
data from 9 participants who each viewed 6 presentations of
each of 60 line drawings, for a total of 360 viewings (each with
an associated brain image). The drawing presentations were or-
ganized into six epochs, where all 60 drawings were presented
in a random order during each epoch. The participants were
instructed to think about the meaning of the word associated
with each drawing as they viewed it. The drawings were
selected from 12 categories: animals, body parts, buildings,
building parts, clothing, furniture, insects, kitchen items, man
made objects, tools, vegetables, and vehicles. We used a similar
analysis to the one we carried out for the Tasks Dataset to
identify connections whose strengths distinguished between
categories (Fig. 2C).

IV. CONCLUDING REMARKS

We presented HTFA, a hierarchical model for efficiently
discovering brain networks in large multi-subject fMRI
datasets. We applied HTFA to three fMRI datasets as a proof
of concept. HTFA automatically discovered stable networks
(i.e. connections that, across subjects, varied in similar ways
between experimental conditions) in all three datasets. In the
first dataset (the Face/Scene Dataset), our results were similar
to those obtained using a related approach, called full corre-
lation matrix analysis (FCMA) that uses matrix algebra tricks
and massive parallelization to exhaustively and efficiently
compare the full (voxel-by-voxel) brain connectivity matrices

across subjects between experimental conditions [18]. For the
other datasets we examined (the Tasks Dataset and the Nouns
Dataset), the fact that HTFA found stable task-specific and
category-specific brain networks is promising. We view HTFA
as a useful tool that will enable neuroscientists to perform ef-
ficient exploratory analyses of functional connectivity in fMRI
datasets. A MATLAB toolbox implementing our model may
be downloaded from http://tinyurl.com/lynhm95.
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